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I. EXECUTIVE SUMMARY

Motivated by reports of accidents in high-altitude aircraft flights due to unforecast strato-
spheric turbulence caused by gravity waves over mountains, this research program aimed
to improve the theoretical understanding of various physical mechanisms relevant to the
generation of stratospheric gravity waves by orography. Specifically, the main objectives
were to study: the effects of the Earth’s rotation on nonlinear mountain inertia–gravity
waves; the generation of gravity waves by transient wind over mountains; the interaction of
mountain gravity waves with the tropopause and possible amplification of these waves in the
stratosphere; and possible transfer of energy from shear-flow instabilities to low-frequency
inertia–gravity waves via resonant nonlinear interactions.

Towards reaching these goals, the following problems have been studied:

(i) Effect of the Earth’s rotation on nonlinear mountain waves. Formally, the effect of
rotation on the generation of mountain waves by wind is controlled by the Rossby number,
Ro = U/ (Lf), where U denotes the wind speed, L is the mountain length and f the Coriolis
parameter. Rotation is expected to be relatively unimportant when Ro ≥ O (1), and this
regime is realized if the mountain is not too long, L ≤ 50 km typically. However, even when
Ro ≫ 1, rotation does affect the low-frequency part of the gravity wave spectrum, suggest-
ing that weak rotation effects could become important at long distances from the mountain.
This, in turn, raises the question: under what conditions can rotation be safely neglected in
analyzing/modeling mountain waves?

We have addressed this issue by constructing an asymptotic model. It turns out that ro-
tation behaves as a ‘singular perturbation’: the effects of rotation become equally important
to the effects of stratification far from the mountain, regardless of how large Ro is. As a
result, the response far from the mountain is dominated by inertia–gravity waves that would
be absent had rotation been ignored. Hence, the wave signature of the mountain extends
much further than would be expected. This piece of work forms part of the doctoral thesis
of B. Druecke (in preparation). For technical details, see §1 in Sec. II below.

(ii) Combined effect of rotation and the tropopause. The asymptotic model above was
generalized to account for the combined effect of the Earth’s rotation and the tropopause.
In the presence of the tropopause, the induced wave disturbance over the mountain can be
dramatically increased when the tropopause is at certain heights (depending on the wind
speed and the stratification). Under such ‘tuned’ conditions, nonlinear wave interactions are
particularly strong and, combined with rotation, drive inertia–gravity waves that propagate
far downstream of the mountain. Our theoretical results indicate that this generation mech-
anism is robust for mesoscale mountains, and rotation effects can be far more important
than previously thought, especially when tropopause tuning is taken into account. A nu-
merical code was also written for solving the Euler equations in the presence of stratification
and rotation. Fully numerical simulations of unsteady responses for various heights of the
tropopause lend support to the theoretical predictions. This piece of work is also part of B.
Druecke’s doctoral thesis (in preparation). Technical details can be found in §2 of Sec. II.
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(iii) Effect of unsteady wind on nonlinear mountain waves. Previous work on mountain
gravity waves invariably assumes steady wind; apart from a few studies of the effect of a time-
harmonic wind component on the linear response, the possible significance of wind variations
remains unexplored theoretically. Using an earlier study by Kantzios and Akylas (Proc. Roy.
Soc. Lond. A 440, 1993) as the starting point, an asymptotic model was developed for the
evolution of the nonlinear response in the presence of slowly varying wind (timescale of the
order of hours). In the case of time-harmonic wind variation, the model reveals that the
appropriate perturbation parameter is the relative amplitude of the oscillatory wind compo-
nent divided by the wind frequency (made dimensionless by the buoyancy frequency). As
a result, a small-amplitude low-frequency oscillatory wind component can play a significant
role, and the response may be quite different from that predicted by steady-state theory.
We have also developed a fully numerical code to study the effects of unsteady wind and
validate the theoretical predictions. This work is part of B. Druecke’s doctoral thesis (under
preparation). Technical details are given in §3 of Sec. II below.

(iv) Energy transfer to low-frequency gravity waves via resonant nonlinear interactions.

We have examined the radiation of low-frequency gravity waves by weakly nonlinear wavepack-
ets propagating in a stratified fluid of variable buoyancy frequency. When wave trapping
is possible as, for example, in the case of a density inversion, we find that the mean flow
induced by nonlinear interactions can give rise to radiating gravity waves. This mechanism
is analogous to the transfer of energy from instability wavepackets, generated by shear-flow
instability, to low-frequency radiating gravity waves. This is work still in progress.

The main results of the present study are highlighted and discussed in connection with
atmospheric gravity wave generation, in §4 of Sec. II.

• Personnel supported: Professor T. R. Akylas, B. Druecke (graduate research assistant)

• Publications

Akylas, T. R., Grimshaw, R. H. J., Clarke, S. R. & Tabaei, A., “Reflecting Tidal Wave
Beams and Local Generation of Solitary Waves in the Ocean Thermocline”, Journal of

Fluid Mechanics, 593, 297-313 (2007)

Akylas, T. R. & Druecke, B. C., “The Effect of Rotation on Finite-Amplitude Mountain
Gravity Waves”, Physica D (Special Volume on the 80th Birthday of Professor L. N.
Howard), to be submitted.

Druecke, B. C., Skopovi, I. & Akylas, T. R., “Effects of Temporal Wind Variations
on Mountain Gravity Waves”, Theoretical and Computational Fluid Dynamics, to be
submitted.

Druecke, B. C. “The Effects of Rotation and Variable Wind in the Generation of Moun-
tain Gravity Waves”, PhD Thesis, in preparation.
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II. TECHNICAL DESCRIPTION

1 Rotation Effects on Nonlinear Stratified Flow Over Topography

In the atmosphere, the typical value of the Brunt–Väisälä (buoyancy) frequency N ∼
10−2 rad/s and the wind speed U ∼ 10 − 30 m/s, so the characteristic vertical length-
scale of mountain waves, U/N ∼ 1 − 3 km, is much shorter than the typical length of the
topography, L ∼ 10 − 100 km; this justifies using the hydrostatic approximation, taking
dispersive effects to be weak. The significance of rotation effects is controlled by the Rossby
number Ro = U/ (Lf), f being the Coriolis parameter, and f/N ∼ 10−2 in the atmosphere.
On scaling grounds, then, rotation would be expected to be relatively unimportant when
Ro ≫ 1 and this regime is realized if the topography is not too long, L ≤ 50 km. Here we
make a systematic study of gravity waves over topography in the limit Ro≫ 1, which reveals
that weak rotation can have a significant effect in the far-field response. For simplicity, we
first consider the case of N constant. The effects of the tropopause, which turn out to be
crucial, are included in §2.

1.1 Governing Equations

The governing equations for incompressible, inviscid, stratified flow in a rotating coordinate
system are

ρ
(

Du

Dt
+ fw

)

= −px

ρ
Dv

Dt
= −py − gρ

ρ
(

Dw

Dt
− fu

)

= −pz

∇ · u = 0

Dρ

Dt
= 0

(1)

where f = 2Ω sin θ is the Coriolis parameter, Ω = 7.2722 rad/sec being the angular speed
of the earth’s rotation and θ the latitude. The Coriolis parameter ranges in value from f =
0 sec−1 at the equator where rotation does not locally affect flows to f = ±1.4544×10−4 sec−1

at the poles where local rotation effects are maximum. The assumption that the thickness
of the fluid is relatively small compared with the horizontal length scales has been made fol-
lowing Kundu and Cohen [12]. The coordinate system is chosen such that y is the outward-
pointing normal to the earth’s surface (vertical), x points in the eastward direction and z
southward, as depicted in Fig. 1.

Assuming the flow is two-dimensional such that there is no variation in the z−direction,
the velocity components in the streamwise and vertical directions can be written using the
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Figure 1: Local coordinate system xyz rotating about polar axis with frequency Ω.

streamfunction, Ψ, as
u (x, y, t) = (u, v, w) = (Ψy,−Ψx, w) (2)

The governing equations then become

ρt + J (ρ,Ψ) = 0

ρ {Ψyt + J (Ψy,Ψ) + fw} = −px

ρ {−Ψxt − J (Ψx,Ψ)} = −py − gρ

ρ {wt + J (w,Ψ) − fΨy} = −pz

(3)

where J (φ, η) = φxηy−φyηx is the Jacobian. For inviscid flow, only the kinematic boundary
condition can be imposed at the surface of the topography. For two-dimensional topography
given by y = h (x) as depicted in Fig. 2, the kinematic boundary condition is

u · n̂ = 0 on y = h (x) ⇒ dΨ

dx
= 0 on y = h (x) ⇒ Ψ = const on y = h (x) (4)

The assumption that disturbances do not propagate far upstream is made. Therefore, far up-
stream as x→ −∞, the wind velocity is uniform giving Ψ → U0y and there is no transverse

velocity, w → 0. The density field is unperturbed, ρ → ρ (y) and hydrostatic,
dp

dy
= −gρ.

Finally, the pressure gradient in the transverse direction is geostrophic, giving pz = ρfU0.
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Figure 2: Physical system of stratified flow over topography in the presence of rotation.

1.1.1 Nondimensionalization

We nondimensionalize the variables as follows

x = Lx′, y =
U0

N0

y′, t =
L

U0

t′

Ψ =
U2

0

N0

Ψ′, w = fLw′, ρ = ρ0ρ
′, p = gρ0

U0

N0

p′
(5)

where L is the characteristic width of the mountain, U0 the characteristic wind velocity, N0

the characteristic Brunt–Väisälä frequency and ρ0 the characteristic density. Substituting
these into the governing equations of (3) and dropping the primes gives

ρt + J (ρ,Ψ) = 0

βρ
{

Ψyt + J (Ψy,Ψ) +
1

Ro2
w
}

= −px

βµ2ρ {Ψxt + J (Ψx,Ψ)} = py + ρ

ρ {wt + J (w,Ψ) − Ψy} = −ρ

(6)

where the dimensionless parameters are the Boussinesq parameter, β =
U0N0

g
, the longwave

parameter µ =
U0

N0L
and the Rossby number Ro =

U0

fL
. The Boussinesq parameter is the

ratio of the vertical length scale of fluid motion to the vertical length scale over which den-
sity changes, and the limit as β → 0 gives the Boussinesq approximation. The longwave
parameter is the ratio of vertical to horizontal length scales, and the limit as µ → 0 gives
the hydrostatic approximation. The Rossby number is the ratio of the Coriolis time scale
to the advective time scale. Thus in the limit as Ro → ∞, rotational effects are relatively
unimportant. The limit where Ro = 1 is the limit where both rotation and advection are of
equal importance, and as Ro→ 0, rotation dominates.

Far upstream the flow is undisturbed, and the nondimensionalized flow is

Ψ → y, w → 0, ρy = −βρN2 (x→ −∞) (7)
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The nondimensionalized boundary condition on the topography becomes

Ψ = const on y = ǫh (x) (8)

where ǫ =
h0N0

U0

is a parameter determining the importance of nonlinearity and h0 is the

characteristic height of the topography. The nondimensional topographic profile used in the
analyses summarized below is either the Gaussian profile of functional form

h (x) = e−x
2

(9)

or the algebraic (Witch of Agnesi) profile

h (x) =
1

1 + x2
(10)

The flow is assumed to be hydrostatic, implying µ→ 0, and nearly steady. We define a slow
time

T = ν2t, ν ≪ 1 (11)

Then the time derivatives in the governing equations can be rescaled and the hydrostatic
approximation imposed to give

J (ρ,Ψ) = −ν2ρT

βρ
{

ν2ΨyT + J (Ψy,Ψ) +
1

Ro2
w
}

= −px

py = −ρ

ρ
{

ν2wT + J (w,Ψ) − Ψy

}

= −ρ

(12)

Differentiating the second equation with respect to y and eliminating pressure in favor of
density using the third equation gives

J (ρ,Ψ) = −ν2ρT

β
{

ρ
[

ν2ΨyT + J (Ψy,Ψ) +
1

Ro2
w
]}

y

= ρx

py = −ρ

J (w,Ψ) = Ψy −
(

1 + ν2wT
)

(13)
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1.1.2 Integration of Density Equation

Making the assumption that the streamlines never become vertical, Ψy 6= 0, throughout the
domain, one can make the coordinate transformation

(x, y, T ) → (x,Ψ, T ) . (14)

Then substituting this into the density equation above gives

Ψy ρx|Ψ = −ν2ρT (15)

Dividing through by Ψy and integrating with respect to x along contours of constant stream-
function (streamlines) gives

ρ = F (Ψ, T ) − ν2

ˆ x

−∞

ρT
Ψy

∣

∣

∣

∣

∣

Ψ

dx′ (16)

where F (Ψ, T ) is a constant of integration. The density profile far upstream as x→ −∞ is
ρ→ ρ (y) = ρ (Ψ). Therefore F (Ψ, T ) = ρ (Ψ) and

ρ (x,Ψ, T ) = ρ (Ψ) − ν2

ˆ x

−∞

ρT
Ψy

∣

∣

∣

∣

∣

Ψ

dx′ (17)

This implies that ρ (x, y, T ) = ρ (x,Ψ) and ρT = ρΨΨT = ρΨΨT + O (ν2) Finally, combining
everything gives

ρ = ρ (Ψ) − ν2ρΨ (Ψ)

ˆ x

−∞

ΨT

Ψy

∣

∣

∣

∣

∣

Ψ

dx′ + O
(

ν4
)

(18)

1.1.3 Integration of In-Plane Momentum Equation

We next integrate the second equation in (13). Taking the y−derivative of the left-hand-side
gives

ρJ (Ψyy,Ψ) + ρΨΨyJ (Ψy,Ψ) − 1

β
ρx|Ψ − 1

β
ρΨΨx = −ν2 (ρΨyT )

y
− 1

Ro2
(ρw)y (19)

In order to simplify notation, we define

S ≡ ρΨyy + ρΨ

(

1

2
Ψ2
y +

y

β

)

(20)

Then

J (S,Ψ) ≡ SxΨy − SyΨx

= ρJ (Ψyy,Ψ) + ρΨJ

(

1

2
Ψ2
y +

y

β
,Ψ

)

+ ρx|Ψ ΨyΨyy + ρxΨ|Ψ
(

1

2
Ψ2
y +

y

β

)

Ψy

(21)
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and the momentum equation can be written as

J (S,Ψ) =

{

ρx|Ψ
(

1

2
Ψ2
y +

y

β

)}

y

− ν2 (ρΨyT )
y
− 1

Ro2
(ρw)y (22)

We next make the Boussinesq approximation, which can be written formally as the limit in
which the Boussinesq parameter, β, approaches zero. Physically this means that the vertical
displacement of fluid particles is small compared with the vertical length scale over which
the density changes are significant. In the Boussinesq approximation, the vertical variation
of density scales as the Boussinesq parameter

ρy = ρΨΨy = O (β) (23)

and the horizontal variation of density along a streamline can be written using (15) as

ρx|Ψ = −ν2 ρT
Ψy

= −ν2ρΨΨT

Ψy

= −ν2ρΨ

ΨT

Ψy

+ O
(

ν4
)

= ν2βρ (Ψ)N2 (Ψ)
ΨT

Ψy

+ O
(

ν4
)

(24)

Then the momentum equation becomes

J (S,Ψ) = ν2ρ (Ψ)N2 (Ψ)

(

ΨT

Ψy

y

)

y

− ν2ρ (Ψ) ΨyyT − 1

Ro2
ρ (Ψ)wy (25)

Defining

R ≡ ρ (Ψ)







ΨyyT −N2 (Ψ)

(

y
ΨT

Ψy

)

y







the momentum equation can be written as

J (S,Ψ) = −ν2R− ρ (Ψ)

Ro2
wy (26)

As in the integration of the density equation, we again make the transformation (x, y, T ) →
(x,Ψ, T ) and assume the streamlines are not vertical throughout the domain (Ψy 6= 0)Then
the momentum equation can be written

Sx|Ψ Ψy = −ν2R− ρ (Ψ)

Ro2
wy (27)

and integrated along streamlines to give

S = G (Ψ, T ) − ν2

ˆ x

−∞

R

Ψy

∣

∣

∣

∣

∣

Ψ

dx′ − 1

Ro2

ˆ x

−∞
ρ (Ψ)

wy
Ψy

∣

∣

∣

∣

∣

Ψ

dx′ (28)

The constant of integration, G (Ψ, T ), is determined by the behavior of the flow far upstream
as x→ −∞. Far upstream,

S → −ρ (Ψ)N2 (Ψ) Ψ as x→ −∞ ⇒ G (Ψ) = −ρ (Ψ)N2 (Ψ) Ψ
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and the solution to the momentum equation is

S = −ρ (Ψ)N2 (Ψ) Ψ − ν2

ˆ x

−∞

R

Ψy

∣

∣

∣

∣

∣

Ψ

dx′ − 1

Ro2

ˆ x

−∞
ρ (Ψ)

wy
Ψy

∣

∣

∣

∣

∣

Ψ

dx′ (29)

Substituting the definition of S given in (20) and utilizing the Boussinesq approximation
gives

Ψyy +N2 (Ψ) (Ψ − y) = − 1

Ro2

ˆ x

−∞

wy
Ψy

∣

∣

∣

∣

∣

Ψ

dx′ + ν2H + O
(

ν4
)

(30)

where

H ≡ − ∂

∂Ψ

ˆ x

−∞
ΨyT |Ψ dx′ +N2 (Ψ)

∂

∂Ψ

ˆ x

−∞
y
ΨT

Ψy

∣

∣

∣

∣

∣

Ψ

dx′ − yN2 (Ψ)
∂

∂Ψ

ˆ x

−∞

ΨT

Ψy

∣

∣

∣

∣

∣

Ψ

dx′

We rewrite the first term on the right-hand-side of (30) to give

Ψyy +N2 (Ψ) (Ψ − y) = − 1

Ro2

∂

∂Ψ

ˆ x

−∞
w|Ψ dx′ + ν2H + O

(

ν4
)

(31)

1.1.4 Integration of Transverse (Spanwise) Momentum Equation

We finally integrate the equation governing momentum in the z−direction, given by the
fourth equation in (13). Using the same coordinate transformation as above, again assuming
Ψ 6= 0 everywhere, we rewrite this equation as

wx|Ψ Ψy = Ψy − 1 − ν2wT (32)

and integrate to obtain

w =

ˆ x

−∞

Ψy − 1

Ψy

∣

∣

∣

∣

∣

Ψ

dx′ − ν2

ˆ x

−∞

wT
Ψy

∣

∣

∣

∣

∣

Ψ

dx′ (33)

where the constant of integration has been set to zero because w → 0 as x→ −∞. The first
term can be rewritten to give

w =
∂

∂Ψ

ˆ x

−∞
(Ψ − y)|Ψ dx′ − ν2

ˆ x

−∞

wT
Ψy

∣

∣

∣

∣

∣

Ψ

dx′ (34)

For the remainder of the report, we shall focus on the results in the limit of steady flow over
topography. The governing equations for steady flow are

ρ = ρ (Ψ)

Ψyy +N2 (Ψ) (Ψ − y) = − 1

Ro2

∂

∂Ψ

ˆ x

−∞
w|Ψ dx′

w =
∂

∂Ψ

ˆ x

−∞
(Ψ − y)|Ψ dx′

(35)
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subject to the boundary condition along the topography

Ψ = 0 on y = ǫh (x) (36)

and the radiation condition as y → ∞ ensuring energy propagates outward away from the
topography.

1.2 Linear Solution for Uniformly Stratified Flow

In the limit when the topography amplitude is small, ǫ≪ 1, the governing equations become
linear because the streamline displacement, η ≡ y − Ψ ∼ ǫ scales with ǫ. Thus derivatives
with respect to the streamfunction can be rewritten as derivatives with respect to y and the
linearized equations become

Ψyy +N2 (y) (Ψ − y) = − 1

Ro2

∂

∂y

ˆ x

−∞
wdx

w =
∂

∂y

ˆ x

−∞
(Ψ − y) dx′

(37)

Defining the streamfunction perturbation, ψ, as

ψ ≡ Ψ − y (38)

and combining equations gives

ψyy +N2 (y)ψ = − 1

Ro2

∂2

∂y2

ˆ x

−∞

ˆ x′

−∞
ψdx′′dx′ (39)

Taking two derivatives with respect to x gives

(

ψyy +N2 (y)ψ
)

xx
+

1

Ro2
ψyy = 0 (40)

subject to the linearized boundary condition

ψ = −ǫh (x) on y = 0 (41)

Defining the Fourier transform in the horizontal and its inverse as

f̂ (k) = F {f (x)} =
1

2π

ˆ ∞

−∞
f (x) e−ikxdx

f (x) = F−1
{

f̂ (k)
}

=

ˆ ∞

−∞
f̂ (k) eikxdk

(42)

the transformed differential equation becomes
(

k2 − β2
)

ψ̂yy + k2N2 (y) ψ̂ = 0 (43)
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subject to the boundary condition

ψ̂ = −ǫĥ (k) on y = 0 (44)

and the radiation condition as y → ∞, where β ≡ 1
Ro

. The general solution is

ψ = 2ℜ
{

ˆ ∞

0

a (k) exp

(

i
k√

k2 − β2
y

)

eikxdx+

ˆ ∞

0

b (k) exp

(

−i k√
k2 − β2

y

)

eikxdx

}

(45)

In general, the radiation condition requires disturbances to radiate outward from their source
as time increases. Here the disturbances must radiate upward away from the topography.
The radiation condition can be formulated by requiring the vertical component of group
velocity to be positive. The linear dispersion relation is

ω = k − sgn k

|m|
√

k2 + β2m2 (46)

and the vertical component of the group velocity is

cg|y =
∂ω

∂m
=

sgn (km) k2

m2
√
k2 + β2m2

(47)

Therefore the radiation condition requires the signs of the vertical and horizontal wavenum-
bers to be the same.

cg|y > 0 ⇒ sgn (km) > 0

In addition, the solution must be bounded as y → ∞, which requires b (k) = 0 when
|k| < β. Applying the radiation condition and boundedness in conjunction with the boundary
condition at y = 0 given by (44) yields the solution

ψ (x, y) = −2ǫℜ
{

ˆ β

0

exp

(

−ky√
β2 − k2

)

ĥ (k) eikxdk +

ˆ ∞

β

exp

(

iky√
k2 − β2

)

ĥ (k) eikxdk

}

(48)

The equation governing the spanwise velocity in the linear limit is wx = ψy and in Fourier

space ŵ = −i ψ̂y

k
Using the solution for the streamfunction given in (48) gives the solution

for the spanwise velocity as

w (x, y) = −2ǫℜ
{

ˆ β

0

iĥ (k) eikx√
β2 − k2

exp

(

−ky√
β2 − k2

)

dk +

ˆ ∞

β

ĥ (k) eikx√
k2 − β2

exp

(

iky√
k2 − β2

)

dk

}

(49)
In both (48) and (49) the integral over wavenumbers 0 < k < β is evanescent in the vertical
and is the contribution dominated by rotation. The integrals for wavenumber k > β are
oscillatory in the vertical. These are the relatively short wavelengths for which rotation is
negligible.
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Figure 3: Streamlines for linear solution of stratified flow over topography in the presence of rotation for
Ro = 5. The values of the Coriolis parameter, Brunt–Väisälä frequency, freestream velocity, mountain width
and mountain height for this simulation were f = 1.0 × 10−4 sec−1, N0 = 1.0 × 10−2 sec−1, U0 = 10 m/s,
L0 = 20 km and h0 = 0.75 km, respectively. The topography shape is Gaussian (9).

Figures 3 and 4 show representative solutions for the linear streamlines and spanwise velocity,
respectively. The solutions shown are for a Rossby number of 5 (β = 1

5
). The streamlines

near x = 0 above the topography are dominated by stratification effects, whereas further
downstream of the topography the effect of rotation is evident in the the longer wavelength
inertial-gravity waves. The spanwise velocity is a purely rotational effect which is not present
in the limit as Ro → ∞. Note that the first streamline in Figure 3 does not coincide with
the topography because the linear boundary condition has been applied.

1.3 Inner Nonlinear Solution and Lack of Uniform Validity

While the above solution accounts for rotation, it neglects the effect of nonlinearity. In order
to incorporate nonlinearity, we return to the original governing equations of (35). In the case
of weak rotation, the Rossby number is large and right-hand-side of the second equation in
(35) is a small correction. As a first approximation, we follow Smith [21] and examine the
solution to the nonlinear problem with weak rotation using a naive perturbation expansion
of the form

Ψ = Ψ(0) + β2Ψ(1) + β4Ψ(2) + · · · (50)

Then the leading order equation is

Ψ(0)
yy + Ψ(0) − y = 0 (51)

subject to
Ψ(0) = 0 on y = ǫh (x) (52)
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Figure 4: Spanwise velocity, w [m/s], for linear solution of stratified flow over topography in the presence of
rotation as given in (49) for Ro = 5. The parameters are the same as those for Figure 3.

and the radiation condition as y → ∞. This is the classic Long’s problem [14] in which
the nonlinear governing equations are reduced to a linear equation with nonlinear boundary
condition. The solution can be written by decomposing the streamfunction as above into its
undisturbed component, y, and a streamfunction disturbance, ψ.

Ψ(0) = y + ψ(0) (53)

Then the solution becomes

ψ(0) = 2 (a (x) cos y − b (x) sin y) (54)

The radiation condition requires

b̂ (k) = −i sgn kâ (k) ⇒ b = −H{a} (55)

where H{a} is the Hilbert transform of a (x). Finally, the boundary condition requires

a (x) cos (ǫh) + H{a} sin (ǫh) = −1

2
ǫh (x) (56)

which must be solved for a (x).

The leading order equation for the spanwise velocity is

w(0) = C (Ψ) +
∂

∂Ψ(0)

ˆ x

0

(

Ψ(0) − y
)∣

∣

∣

Ψ(0)
dx′ (57)
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where the integral is evaluated along the contours of constant Ψ(0). Substituting the leading
order solution for Ψ(0) gives

w(0) = C (Ψ) + 2
∂

∂Ψ(0)

ˆ x

0

[a (x′) cos y − b (x′) sin y]|Ψ(0) dx
′ (58)

We wish to examine the asymptotic behavior of the solution for the streamfunction and
spanwise velocity in the limit as x → ±∞. In order for the Fourier transform of the topog-

raphy to converge in the linear solution, it is necessary that h (x) = o
(

1
x

)

as x → ±∞. In

this limit when x is large, the amplitude is small and the solution is linear. Thus we have

a ∼ − ǫ

2
h (x) = o

(

1

x

)

b = −H{a} = −i
ˆ ∞

0

â (k) eikxdk + c.c. ∼ 2

x
â (0) =

1

πx

ˆ ∞

−∞
a (x′) dx′



























as x→ ±∞

(59)
Since a (x) ≪ b (x) as x → ±∞, the behavior of the leading-order streamfunction solution
as x→ ±∞ is

Ψ(0) ∼ y − 4

x
â (0) sin y as x→ ±∞ (60)

which decays to the undisturbed solution, Ψ = y, as x→ ±∞. In the limit as x→ ±∞, the
spanwise solution behaves as

w(0) ∼ 2
∂

∂y

ˆ ∞

0

−2

x
â (0) sin ydx′ + C

(

Ψ0
)

∼ −4â (0) ln |x| cos y as x→ ±∞ (61)

Thus the spanwise velocity diverges logarithmically far from the topography, and the naive
perturbation solution of (50) is not uniformly valid, which agrees with the findings of Smith
[21]. As Smith suggests, there are really two horizontal length scales present. The first is the
width of the mountain used above, and the second is the length over which rotational effects
act, and is Lrot ∼ U0

f
. The procedure of matched asymptotic expansions can be used to

account for these two distinct length scales and the logarithmic divergence of the spanwise
velocity. In this matching, the domain is divided into an inner solution for x → 0 and
an outer solution as |x| → ∞. The above naive perturbation solution represents the first
approximation for the inner solution, for which rotation is a weak perturbation. Far from
the topography as length scales become large and Coriolis acceleration has sufficient time
to act, rotation is of leading order importance. However, assuming the topography decays

as h = o
(

1
x

)

, the disturbances far from x = 0 are small and the solution becomes linear,

allowing the application of the linear boundary condition and superposition. Figure (5) shows
the effect of rotation in the linear limit. Near the topography, the solutions with and without
rotation are nearly identical. Rotational effects become important further downstream. This
provides a justification for the approach of matched asymptotic expansion, wherein rotation
is weak in the inner solution and is of leading order importance in the outer solution.
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Figure 5: A comparison of streamlines showing the effect of rotation for the linear solution. Downstream
of the topography rotational effects become more important as the Coriolis force has more time to act.
Far downstream the inertia–gravity waves decay as energy is radiated upward. The values of the Coriolis
parameter, Brunt–Väisälä frequency, freestream velocity, mountain width and mountain height for Ro = 10
were f = 1.0×10−4 sec−1, N0 = 1.0×10−2 sec−1, U0 = 10 m/s, L0 = 10 km and h0 = 0.75 km, respectively.
For the linear limit of Long’s solution the parameter values were the same, with the exception that the
Coriolis parameter was set to zero. The topography shape is Gaussian (9).
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1.4 Outer Solution

Far from the center of the topography, the solution is linear and the governing equations are
given by (40) and (1.2) subject to the boundary condition given in (41). In order to account
for the leading-order importance of rotation, the horizontal coordinate and wavenumber
should be scaled by β as

x̃ = βx, k̃ =
1

β
k (62)

and the streamfunction and velocity variables as

ψ = βψ̃, u = 1 + βũ, v = β2ṽ, w = w̃ (63)

where ũ = ψ̃y and ṽ = −ψ̃x̃. Then the governing equations become
(

ψ̃yy +N2ψ̃
)

x̃x̃
+ ψ̃yy = 0

w̃x̃ = ψ̃y

(64)

Far from the topography in the stretched coordinate, x̃, the topography appears to be a
Dirac δ−distribution. Then the linearized boundary condition along y = 0 in this outer
region can be written as

ψ = βψ̃ = −2πǫĥ (0) δ (x̃) on y = 0 (65)

where the factor 2πǫĥ (0) is the area under the topography curve. Then the solution to these
is found via Fourier transforms to be

ψ̃ = −2ǫĥ (0) (I1 + I2)

w̃ = −2ǫĥ (0) (I3 + I4)

(66)

where

I1 ≡ ℜ






ˆ 1

0

exp





−k̃y
√

1 − k̃2



 eik̃x̃dk̃







I2 ≡ ℜ






ˆ ∞

1

exp





ik̃y
√

k̃2 − 1



 eik̃x̃dk̃







I3 ≡ ℜ






ˆ 1

0

ieik̃x̃
√

1 − k̃2
exp





−k̃y
√

1 − k̃2



 dk̃







I4 ≡ ℜ






ˆ ∞

1

eik̃x̃
√

k̃2 − 1
exp





ik̃y
√

k̃2 − 1



 dk̃







(67)
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In order to match this solution with the inner solution near the topography, it is necessary
to examine (66) in the limit as x̃→ 0. The limit of this outer solution as x̃→ 0 is

ψ̃ ∼ 2ǫĥ (0)
sin y

x̃

ũ ∼ 2ǫĥ (0)
cos y

x̃

ṽ ∼ 2ǫĥ (0)
sin y

x̃2

w̃ ∼ 2ǫĥ (0) cos y ln |x̃| + πǫĥ (0) sin y sgn x̃



































































(x̃→ 0)

w̃|x̃→0+

x̃→0− = 2πǫĥ (0) sin y

(68)

The details of the evaluation of these limits is found in Appendix A.

1.5 Matching

In order to match the inner and outer solutions, one must return to the inner solution
and evaluate its limit as x → ∞ more precisely. The inner solution for the streamfunction
disturbance was given in (54). Since the integrals involved in evaluating w are along contours
of constant streamfunction, it is useful to rewrite the solution in terms of harmonic functions
of streamfunction, Ψ, as

ψ(0) = Ψ(0) − y = 2
[

a (x) cos Ψ(0) − b (x) sin Ψ(0)
]

+
∞
∑

n=1

rn sinnΨ(0) + sn cosnΨ(0) (69)

where rn and sn are coefficients arising from nonlinearity and can be determined analytically
by expanding

ψ(0) = 2 (a cos y − b sin y) = 2
[

a (x) cos Ψ(0) − b (x) sin Ψ(0)
]

+
∞
∑

n=1

rn sinnΨ(0) + sn cosnΨ(0)

The first few terms can be shown by hand to be

r1 = b
(

a2 + b2
)

, s1 = −a
(

a2 + b2
)

r2 = 2
(

a2 − b2
)

, s2 = 4ab

r3 = 3b
(

3a2 − b2
)

, s3 = 3a
(

3b2 − a2
)
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Substituting the above expansion into the leading order equation for the spanwise velocity
given in (57), the spanwise velocity is

w(0)
(

x,Ψ(0)
)

= C
(

Ψ(0)
)

− 2

[

sin Ψ(0)

ˆ x

0

a (x′) dx′ + cos Ψ(0)

ˆ x

0

b (x′) dx′
]

+
∞
∑

n=1

n

[

cosnΨ(0)

ˆ x

0

rn (x′) dx′ − sinnΨ(0)

ˆ x

0

sn (x′) dx′
]

(70)

Then the jump in spanwise velocity across the inner solution is found to be

w(0)
∣

∣

∣

∞

−∞
= −4πâ (0) sin Ψ(0) + 2π

∞
∑

n=1

n
(

r̂n (0) cosnΨ(0) − ŝn (0) sinnΨ(0)
)

(71)

Details of this computation are found in Appendix B.

In summary, we have thus far obtained an inner solution of

ψ(0) = 2
(

a cos Ψ(0) − b sin Ψ(0)
)

+
∞
∑

n=1

(

rn sinnΨ(0) + sn cosnΨ(0)
)

w(0) = −2

[

sin Ψ(0)

ˆ x

0

a (x′) dx′ + cos Ψ(0)

ˆ x

0

b (x′) dx′
]

+
∞
∑

n=1

n

[

cosnΨ(0)

ˆ x

0

rn (x′) dx′ − sinnΨ(0)

ˆ x

0

sn (x′) dx′
]

+ C
(

Ψ(0)
)

with asymptotic behavior

ψ(0) ∼ −4â (0)
sin y

x

w(0) ∼ −4â (0) cos y ln |x| + C
(

Ψ(0)
)



















, |x| → ∞

w(0)
∣

∣

∣

∞

−∞
= −4πâ (0) sin y + 2π

∞
∑

n=1

n [r̂n (0) cosny − ŝn (0) sinny]

and an outer solution of
ψ̃ = −2ǫĥ (0)ℜ{I1 + I2}

w̃ = −2ǫĥ (0)ℜ{I3 + I4}
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with asymptotic behavior

ψ̃ ∼ 2ǫĥ (0)
sin y

x̃

w̃ ∼ 2ǫĥ (0) cos y ln |x̃| − π

2
sgn x̃ sin y























, x̃→ 0

w̃|0+

0− = 2πǫĥ (0) sin y

At present, the inner and outer solutions do not match. Thus it is necessary to superimpose
a second linear solution in the outer domain upon the current outer solution in order to
satisfy the matching conditions as x̃ → 0. The derivation is found in Appendix C and the
result is

ψ̃ =

[

4â (0) −
∞
∑

n=2

ŝn (0)

]

ℜ{I1 + I2} +
∞
∑

n=2

Φ
(n)
x̃

w̃ =

[

4â (0) −
∞
∑

n=2

ŝn (0)

]

ℜ{I3 + I4} +
∞
∑

n=2

Φ(n)
y

(72)

where

Φ(n) = −2π cos knx̃ [r̂n (0) sinny + ŝn (0) cosny]H (x̃) + 2ŝn (0)
(

I
(n)
5 + I

(n)
6

)

, n > 1 (73)

where

I
(n)
5 ≡ ℑ

{

ˆ 1

0

keikx̃

k2 − k2
n

exp

(

− ky√
1 − k2

)

dk

}

, n > 1

I
(n)
6 ≡ ℑ

{

& ∞

1

keikx̃

k2 − k2
n

exp

(

i
ky√
k2 − 1

)

dk

}

, n > 1

(74)

This results contains the proper jump condition for higher harmonics, n > 2. However, the
first harmonic in the outer domain still does not match the first harmonic in the inner. In
order to correct that, we add another linear solution to the solution in the outer domain,
such that the the first harmonic also satisfies the jump condition. The final result is

ψ̃ =

[

4â (0) −
∞
∑

n=2

ŝn (0)

]

ℜ{I1 + I2} +
∞
∑

n=2

Φ
(n)
x̃ + 2

[

ŝ1 (0) ψ̃(1)
a + r̂1 (0) ψ̃

(1)
b

]

w̃ =

[

4â (0) −
∞
∑

n=2

ŝn (0)

]

ℜ{I3 + I4} +
∞
∑

n=2

Φ(n)
y + 2

[

ŝ1 (0) w̃(1)
a + r̂1 (0) w̃

(1)
b

]

(75)
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where
ψ̃(1)
a ≡ I1 + I7

ψ̃
(1)
b ≡ ℜ







ˆ ∞

1

sin





k̃y
√

k̃2 − 1



 eik̃x̃dk̃







w̃(1)
a ≡ I3 + I8

w̃
(1)
b ≡ ℑ







ˆ ∞

1

eik̃x̃
√

k̃2 − 1
cos





k̃y
√

k̃2 − 1



 dk̃







I7 ≡ ℜ






ˆ ∞

1

cos





k̃y
√

k̃2 − 1



 eik̃x̃dk̃







I8 ≡ −ℑ






ˆ ∞

1

eik̃x̃

k̃2 − 1
sin





k̃y
√

k̃2 − 1



 dk̃







(76)

1.6 Analytic Results

Figures 6 and 7 show the streamlines for the linear and nonlinear cases, respectively for a
Gaussian mountain (9) of amplitude ǫ = 0.75 and a Rossby number Ro = 3. The solution
is only shown downstream of the topography where the outer, nonlinear analytic theory is
valid for x ≫ 0. Qualitatively the linear and nonlinear streamlines are very similar. This is
consistent with the numerical simulations of Trüb and Davies[22].

Figures 8 and 9 are spanwise velocity analogs of Figures 6 and 7, respectively, showing
the spanwise velocity far downstream of the topography. Here the linear and nonlinear
solutions are qualitatively quite different. While the linear spanwise velocity has relatively
long contours of constant velocity running primarily from a high altitude upstream to a low
altitude downstream, the nonlinear spanwise velocity exhibits much more structure as shown
by the closed contours of spanwise velocity in Figure 9. This is indicative of the nonlinearity
in the inner solution, which forces higher harmonics in the outer solution. These higher
harmonics propagate far downstream of the topography and do not dissipate because the
analytic model does not include viscous and turbulent dissipative effects.

1.7 Computational Approach

In addition to an analytic theory for the examination of rotation effects on nonlinear flow
over topography, a computer code has been developed for the fully numeric simulation of
these waves. The code solves Euler’s equations in a rotating coordinate system as given
in (1) using a projection method for density-stratified fluid based on the work of Bell and
others [2, 3] as implemented by Skopovi [18, 19, 20].
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Figure 6: Streamlines from linear analytic solution far downstream of Gaussian topography for ǫ = 0.75 and
Ro = 3. The values of the Coriolis parameter, Brunt–Väisälä frequency, freestream velocity, mountain width
and mountain height for this simulation were f = 1.0 × 10−4 sec−1, N0 = 1.0 × 10−2 sec−1, U0 = 10 m/s,
L0 = 33.3 km and h0 = 0.75 km, respectively. The topography shape is Gaussian (9).

Horizontal Position − x [km]

A
lti

tu
de

 −
 y

 [k
m

]

500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14

16

18

20

Figure 7: Nonlinear analytic streamfunction in the outer domain given by the matched asymptotic solution.
The parameters used are the same as those for Figure 6.
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Figure 8: Spanwise velocity from linear analytic solution far downstream of Gaussian topography for ǫ = 0.75
and Ro = 3. The values of the Coriolis parameter, Brunt–Väisälä frequency, freestream velocity, mountain
width and mountain height for this simulation were f = 1.0×10−4 sec−1, N0 = 1.0×10−2 sec−1, U0 = 10 m/s,
L0 = 33.3 km km and h0 = 0.75 km, respectively. The topography shape is Gaussian (9).
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Figure 9: Nonlinear analytic spanwise velocity in the outer domain given by the matched asymptotic solution.
The parameters used are the same as those for Figure 8.
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1.7.1 Overview of Projection Method

One of the difficulties in the modeling of incompressible flow is that the time derivative of
pressure does not appear explicitly, so it is not straightforward to write a time-evolution
equation for it and integrate in time, as done with velocity and density. One approach to
resolve this is known as the projection method wherein the velocity is evolved in time using
a finite-difference approximation, and the time derivative of velocity is given by all the terms
in the Navier-Stokes equation with the exception of the pressure gradient term. For a simple
forward Euler time discretization, this could be written as

u∗ = u(n) + ∆tf (n) (77)

where u∗ is an initial approximation to the velocity vector at the next time step, and f is
the vector of forces acting on the fluid including all stresses with the exception of pressure.
This new approximation of velocity, u∗ will not be divergence-free in general, which violates
conservation of mass. In order to make the new velocity field divergence-free, the projection
step is used, whereby u∗ is projected onto a divergence-free vector space. In time the velocity
is advanced as

u(n+1) = u∗ − ∆t∇p (78)

Taking the divergence of this gives

∇ · u(n+1) = ∇ · u∗ − ∆t∇2p

The left-hand-side of this is zero in order for the flow to be incompressible, and the appro-
priate pressure is determined by solving the Poisson equation

∇2p =
1

∆t
∇ · u∗ (79)

Once the pressure is known, its gradient can be determined and the velocity can be updated
using (78).

The Euler equations are inherently nonlinear because of the advective terms. In this nu-
merical model, the advective terms are treated using a finite-volume approach in order to
conserve momentum. The second-order Godunov method is used to approximate fluxes
across finite-volume boundaries. The implementation follows the work of Bell and others
[2, 3] and is the approach used by Skopovi [18, 19].

1.7.2 Viscous Boundary Layers

Throughout the analytical derivation, the radiation condition was utilized to ensure energy
propagates upwards and downstream, away from the topography. The radiation condition
was required for the steady-state solution. If an initial value problem is solved, as is the
case for these fully numeric simulations, a radiation condition is not needed because energy
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will naturally propagate outward from the topography. However, another difficulty arises
because the computational procedure is inherently limited to a finite domain. Thus the
issue arises of what to do when the wave energy reaches the boundary of the computational
domain. Methods of canceling the wave energy have been proposed for a monochromatic
spectrum [7]. However, in the current problem, the spectrum is not monochromatic. Skopovi
[18, 19, 20] has used viscous boundary layers to dissipate the wave energy before it reaches
the boundary of the domain.

In this approach, the Euler equations of (1) are modified to include a Newtonian viscous
dissipation term as

ρ
(

Du

Dt
+ fw

)

= −px + µ

(

∂2u

∂x2
+
∂2u

∂y2

)

ρ
Dv

Dt
= −py − gρ+ µ

(

∂2v

∂x2
+
∂2v

∂y2

)

ρ
(

Dw

Dt
− fu

)

= −pz + µ

(

∂2w

∂x2
+
∂2w

∂y2

)

∇ · u = 0

Dρ

Dt
= 0

(80)

where µ = µ (x, y) is a nonuniform coefficient of viscosity. Note that this formulation does
not agree with physical formulation of flow in a field of nonuniform viscosity, where the
gradient of the stress tensor appears on the right-hand-side and

∇ · (µ∇u) 6= µ∇2u

Nevertheless, the viscous boundary layers are inherently non-physical and our only concern
is the prevention of reflections at the boundary. Thus the choice of viscous layer thickness
and viscosity profile is empirical. Following the work of Skopovi, we choose a sinusoidal
profile for the viscosity in the viscous layers. In the viscous layer at the top of the domain,
the viscosity is given as

µ = µ0 sin

(

π

2

y − y0

Y − y0

)

, y0 < y < Y

where y is the vertical coordinate, y0 the height at at which the viscous boundary layer
begins, and Y the height of the top of the computational domain. An analogous formula
is implemented for the viscous boundary layers at the left and right edges of the computa-
tional domain, and the reader is referred to Skopovi [19] for more detail. A representative
distribution of viscosity is shown in Figure 10 where x and y are nondimensional coordinates
used in the computations.
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Figure 10: Contours of viscosity for viscous boundary layers used to damp and absorb waves at boundaries
of domain. The viscous boundary layers are used as an artificial radiation condition.
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The inclusion of viscous terms in an explicit temporal discretization results in a more severe
stability constraint, requiring ∆t ∼ O (∆x2,∆y2) as opposed to the stability constraint for
inviscid flow of ∆t ∼ O (∆x,∆y). In order to eliminate the need for an extremely small
timestep, the viscous terms are treated implicitly by solving

u∗ = u(n) + ∆tµ∇2u∗

using Cholesky factorization.

1.8 Computational Results

Figures 11 and 12 show the streamlines and spanwise velocity, respectively, evaluated using
the fully numeric simulation for stratified flow over topography with weak rotation. The
results are for a nondimensional mountain amplitude of ǫ = 0.40 and the results are scaled
up linearly to an amplitude of ǫ = 0.75 for comparison with the nonlinear results shown in
Figures 13 and 14. The results are qualitatively quite similar to the linear, analytic solution
shown in Figures 3 and 4 with different scaling because a Rossby number of 5 had been used
for the linear, analytic results previously. The waves propagate upward and downstream
(rightward) from the topography. The plotted solution has not yet reached steady-state far
aloft and downwind of the topography. The results are plotted for this time despite having
not achieved steady-state because as time increases, the viscous layers become saturated and
are no longer able to dissipate all waves at the boundary. Thus for large times, spurious
reflections from the viscous layers and boundaries are found in the interior of the domain.
The results shown in Figures 11 through 14 have negligible reflections but have not reached
steady-state throughout the domain.

Figures 13 and 14 show the numerically calculated streamfunction and spanwise velocity re-
spectively. These plots are analogous to those in Figures 11 and 12 with the only difference
being that the topography amplitude is ǫ = 0.75 for Figures 13 and 14, whereas it is ǫ = 0.40
for Figures 11 and 12.

Qualitatively, the numeric results with ǫ = 0.40 differ very little from those with ǫ = 0.75.
While the analytic theory showed much more structure in the spanwise velocity for the case
of ǫ = 0.75, the fully numeric solution does not show this. Part of the reason for this is that
the numerical solutions have achieved steady-state for a very limited horizontal domain. The
analytic results in Figure 9 show closed contours of spanwise velocity far downstream of the
topography, and very few of these contours are present in the domain x < 900 km, for which
we have numeric results.

1.9 Discussion

The results of this section show that, for a single layer of uniformly stratified flow, nonlinear
interactions above the mountain generate higher-harmonic disturbances that propagate far
downstream of the topography. This is best seen in comparing Figure 9 for nonlinear span-
wise velocity with Figure 8 for the corresponding linear result of spanwise velocity. While
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Figure 11: Streamlines from fully numeric simulation for relatively weak nonlinearity. The values of charac-
teristic Coriolis parameter, Brunt–Väisälä frequency, undisturbed wind speed, mountain width and mountain
height for this simulation were f = 1.0×10−4 sec−1, N0 = 1.0×10−2 sec−1, U0 = 10 m/s, L0 = 33.3 km and
h0 = 0.40 km, giving nondimensional parameters Ro = 3, ǫ = 0.40 and µ = 1

6
. The streamlines are plotted

at a computational time of tcomp = 200, corresponding to a nondimensional time of t = 33.33 or a physical
time of tdimensional ≈ 185 hr. The amplitude of the streamfunction disturbance is scaled by a factor of 1.875
for comparison with results for the larger-amplitude mountain below.
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Figure 12: Spanwise velocity, w [m/s], from fully numeric simulation for relatively weak nonlinearity. The
parameters for these results are the same as those for Figure 11. The amplitude of the spanwise velocity is
scaled by a factor of 1.875 for comparison with results for the larger-amplitude mountain below.
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Figure 13: Streamlines from fully numeric simulation for mountain with nondimensional amplitude ǫ = 0.75.
The parameters are the same as those for Figure 12, with the exception of the topography height and
nondimensional amplitude, for which the values are h0 = 0.75 km and ǫ = 0.75, respectively. Furthermore,
the amplitude of the response is unscaled.
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Figure 14: Spanwise velocity from fully numeric simulation for relatively strong nonlinearity.
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these higher harmonics are present for a single layer atmosphere, they are relatively weak
because the nonlinear interactions in Long’s solution for a single layer are relatively weak.
Thus the analysis serves as a proof-of-concept showing inertia–gravity waves far downstream
produced by nonlinear interactions above the mountain, but these waves have relatively
small amplitude due to weak nonlinear interactions. The subsequent section shows that in a
two-layer atmosphere, the effect of the tropopause can significantly increase the amplitude
of the nonlinearly generated inertia–gravity waves downstream.

The numerical results in this section are rather inconclusive. The primary cause is limited
computational resources. The fully numeric simulation is constrained to a finite domain and
the simulations are started from a uniform velocity field and allowed to evolve in time. The
spatial and temporal domains shown in Figures 11 through 14 are insufficient to conclusively
resolve nonlinearities far downstream of the topography at steady-state. For example, the
horizontal domain for the numerical results is limited to x < 900 km in the numerical results
of Figures 11 through 14. This implies that the analytical theory provides a predictive model
yielding information unable to be obtained from these numeric simulations.

In summary, the results of this analysis show that nonlinearity in the inner solution slightly
affects the spanwise velocity in the outer solution. However, this forcing is relatively weak
because the nonlinearities above the topography in Long’s solution for a single, uniformly
stratified layer are relatively weak, and the nonlinear solution does not differ appreciably
from Long’s solution in the linear limit. Next we examine the effect of the tropopause in a
model atmosphere with two layers of uniformly stratified flow and seek conditions for which
the nonlinear forcing of the outer solution is stronger.

29



2 Two Layers of Uniform Stratification – Effect of the Tropopause

2.1 Governing Equations

In general, there is a change in the Brunt–Väisälä frequency across the tropopause, with
the Brunt–Väisälä frequency typically being smaller in the troposphere and larger in the
stratosphere. While the Brunt–Väisälä frequency is not spatially uniform in either layer of
the atmosphere, we formulate a model to examine the effect this change in Brunt–Väisälä
frequency across the tropopause has in conjunction with nonlinearity and rotation. The
effect of the tropopause for cases excluding rotation has been previously studied by several
investigators including Durran[6] and Davis[5]. In this investigation, we utilize the frame-
work of matched asymptotics developed above to analyze a system with two layers of uniform
Brunt–Väisälä frequency in the presence of nonlinearity and rotation. The model under in-
vestigation is sketched in Figure 15.

Figure 15: Physical system of stratified flow over topography in the presence of rotation incorporating the
effect of the tropopause.

The governing equations for this system are those derived in §1.1 and given in (35) and
(36) where we set the Brunt–Väisälä frequency to N1 in the troposphere and N2 in the
stratosphere, with a step-change at the tropopause.

Ψ(1),yy +N2
1

(

Ψ(1) − y
)

= − 1

Ro2

∂

∂Ψ

ˆ x

−∞
w|Ψ dx′, Ψ < Ψ∗

Ψ(2),yy +N2
2

(

Ψ(2) − y
)

= − 1

Ro2

∂

∂Ψ

ˆ x

−∞
w|Ψ dx′, Ψ > Ψ∗

w =
∂

∂Ψ

ˆ x

−∞
(Ψ − y)|Ψ dx′,∀y > ǫh (x)

(81)
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where Ψ∗ is the streamline on the tropopause separating the troposphere and stratosphere.
As in the case of a single layer of stratified flow, the kinematic boundary condition at the
surface of the topography is imposed, implying that there is no flow normal to the surface
and resulting in the fact that the topography is itself a streamline.

Ψ = 0, y = ǫh (x) (82)

The radiation condition as y → ∞ must also be imposed. Finally, we must impose some
interfacial conditions at the tropopause. The first is the kinematic condition requiring the
flow in the vertical direction to be equal on either side of the tropopause, resulting in the
fact that tropopause itself is a streamline and the streamfunction on either side must be
equal to zero.

Ψ(1) = Ψ(2) = Ψ∗, Ψ = Ψ∗ (83)

Since the mass flow rate between two streamlines is proportional to the difference in stream-
function, this is consistent with the fact that the troposphere and stratosphere are in contact
with each other and there is no flow between the two layers. This assumes the tropopause
has infinitesimal thickness, consistent with the model proposed in (81).

The second interface condition is a dynamic condition coming from a balance of pressure on
either side of the tropopause streamline, Ψ∗.

p1 = p2, Ψ = Ψ∗

which implies u1 = u2 on Ψ = Ψ∗ in the hydrostatic limit. Rewriting the horizontal velocity
in terms of the streamfunction gives the second boundary condition at the tropopause.

∂Ψ(1)

∂y
=
∂Ψ(2)

∂y
,Ψ = Ψ∗ (84)

2.2 Linear, Uniformly Valid Solution

In the limit of ǫ→ 0, the streamfunction disturbances are small (of order ǫ) and surfaces of
constant altitude approach surfaces of constant streamfunction.

Ψ = y + ψ, ψ = O (ǫ)

Then the boundary conditions at the topography and tropopause can be applied along
contours of constant altitude. Decomposing the streamfunction into its undisturbed value,
y and a streamfunction disturbance, ψ, the governing equations become

ψ(1),yy +N2
1ψ(1) +

1

Ro2

ˆ x

−∞

ˆ x′

−∞
ψ(1),yydx

′′dx′, y < H

ψ(2),yy +N2
2ψ(2) +

1

Ro2

ˆ x

−∞

ˆ x′

−∞
ψ(2),yydx

′′dx′, y > H

w(1),x = ψ(1),y

w(2),x = ψ(2),y

(85)
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subject to
ψ(1) = −ǫh (x) , y = 0

ψ(1) = ψ(2), y = H

∂ψ(1)

∂y
=
∂ψ(1)

∂y
, y = H

(86)

and the radiation condition. The solution is

ψ(1) = 2ℜ
{

ˆ β

0

[

−ǫĥ cosh

(

N1ky√
β2 − k2

)

+ g sinh

(

N1ky√
β2 − k2

)]

eikxdk

+

ˆ ∞

β

[

−ǫĥ cos

(

N1ky√
k2 − β2

)

+ g sin

(

N1ky√
k2 − β2

)]

eikxdk

}

, y < H

ψ(2) = 2ℜ
{

ˆ β

0

d exp

(

−N2ky√
β2 − k2

)

eikxdk +

ˆ ∞

β

c exp

(

i
N2ky√
k2 − β2

)

eikxdk

}

, y > H

w(1) = 2ℜ
{

ˆ β

0

−iN1√
β2 − k2

[

−ǫĥ sinh

(

N1ky√
β2 − k2

)

+ g cosh

(

N1ky√
β2 − k2

)]

eikxdk

+

ˆ ∞

β

−iN1√
k2 − β2

[

ǫĥ sin

(

N1ky√
k2 − β2

)

+ g cos

(

N1ky√
k2 − β2

)]

eikxdk

}

, y < H

w(2) = 2ℜ
{

ˆ β

0

iN2√
β2 − k2

d exp

(

−N2ky√
β2 − k2

)

eikxdk

+

ˆ ∞

β

N2√
k2 − β2

c exp

(

i
N2ky√
k2 − β2

)

eikxdk

}

, y > H

(87)
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with constants of integration c (k), d (k) and g (k) determined from the matching conditions
to be

c (k) =
2N1ǫĥ (k)

(N2 −N1) exp
(

i (N1+N2)kH√
k2−β2

)

− (N1 +N2) exp
(

i (N2−N1)kH√
k2−β2

) , β < k <∞

d (k) =
−2N1ǫĥ (k)

(N1 +N2) exp
(

(N1−N2)kH√
β2−k2

)

+ (N1 −N2) exp
(

−(N1+N2)kH√
β2−k2

) , 0 < k < β

g (k) =































































(N1 +N2) exp
(

(N1−N2)kH√
β2−k2

)

+ (N2 −N1) exp
(

−(N1+N2)kH√
β2−k2

)

(N1 +N2) exp
(

(N1−N2)kH√
β2−k2

)

+ (N1 −N2) exp
(

−(N1+N2)kH√
β2−k2

)ǫĥ (k) , 0 < k < β

−i
(N1 −N2) exp

(

i (N1+N2)kH√
k2−β2

)

− (N1 +N2) exp
(

i (N2−N1)kH√
k2−β2

)

(N2 −N1) exp
(

i (N1+N2)kH√
k2−β2

)

− (N1 +N2) exp
(

i (N2−N1)kH√
k2−β2

)ǫĥ (k) , β < k <∞

(88)
The details of this solution are found in Appendix D.

2.3 Inner Solution

The preceding solution neglects the effect of nonlinearity, which is the primary concern of
this study. In order to account for nonlinearity, a matched asymptotic solution is derived
as in the case of a single layer of uniformly stratified flow. In the inner solution near the
topography, treated as a weak perturbation to the two-layer analog of Long’s solution. The
governing equations for the inner solution are then

∂2Ψ
(0)
(1)

∂y2
+N2

1

(

Ψ
(0)
(1) − y

)

= 0, Ψ < Ψ∗

∂2Ψ
(0)
(2)

∂y2
+N2

2

(

Ψ
(0)
(2) − y

)

= 0, Ψ > Ψ∗

w(0) =
∂

∂Ψ(0)

ˆ x

−∞

(

Ψ(0) − y
)∣

∣

∣

Ψ(0)
dx′

(89)

where the superscript (0) denotes the leading-order solution and the subscripts denote
whether the solution is in the troposphere, (1), or the stratosphere, (2). Here the stream-
line, Ψ = Ψ∗ is the streamline of the tropopause, which is not known a priori and must be
determined as part of the solution of the equations.
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The problem of two layers of uniformly stratified flow in the absence of rotation is an ex-
tension of Long’s classic solution [14] and has been studied by Durran[6] and Davis[5]. The
solution can be formulated generally as

ψ(1) = a (x) cos (N1y) + b (x) sin (N1y) , Ψ < Ψ∗

ψ(2) = c (x) cos (N2y) + d (x) sin (N2y) , Ψ > Ψ∗
(90)

where we have decomposed the streamfunction, Ψ, into the sum of its undisturbed value,
y and a streamfunction disturbance, ψ. Then the kinematic boundary condition at the
topography, y = h (x), requires

a cos (N1h) + b sin (N1h) = −h (x) (91)

and the radiation condition as y → ∞ gives

d (x) = H{c (x)} (92)

resulting in wave energy propagating vertically upwards. As in the linear case, two conditions
are needed at the tropopause to match the solutions in the troposphere and stratosphere.
We can write the curve of the troposphere as

Ψ∗ = H + ψ∗ (x) = H − η (x) (93)

where H is the undisturbed height of the tropopause and η is the vertical displacement of the
tropopause, giving the tropopause location as y = H + η (x), which is also unknown. The
first matching condition at the tropopause is the kinematic matching condition requiring
the streamfunction in the troposphere and stratosphere to be equal at the tropopause. This
gives

a cos [N1 (H + η)] + b sin [N1 (H + η)] = c cos [N2 (H + η)] + d sin [N2 (H + η)] (94)

The second interface matching condition is the dynamic boundary condition requiring the
pressure to be equal on either side of the tropopause. Integrating Bernoulli’s equation from
far upstream and noting that the density in the troposphere at the tropopause is equal to
the density in the stratosphere at the tropopause, gives

u(1) = u(2), y = H + η ⇒ ∂ψ(1)

∂y
=
∂ψ(2)

∂y
, y = H + η (95)

Substituting the general solution of (90) gives

N1 {−a sin [N1 (H + η)] + b cos [N1 (H + η)]} = N2 {−c sin [N2 (H + η)] + d cos [N2 (H + η)]}
(96)

Finally, the fifth equation needed is simply a specification of the tropopause displacement,
η.

η = −ψ∗ = −a (x) cos [N1 (H + η)] − b (x) sin [N1 (H + η)] (97)

Thus (91), (92), (94), (96) and (97) are the five equations used to determine a (x), b (x),
c (x), d (x) and η (x). These are system of nonlinear equations because the boundary and
matching conditions are applied along contours of constant streamfunction, as opposed to
contours of constant altitude. They can be solved numerically using an iterative procedure,
such as Newton-Raphson.
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2.4 Outer Solution

The outer solution is obtained by scaling the linear, uniformly valid solution of (87) into the
outer variables as done for the single-layer case above. Without loss of generality, we can set
the nondimensionalized Brunt–Väisälä frequency in the stratosphere equal to unity, N2 = 1,
and the nondimensionalized Brunt–Väisälä frequency in the tropopause to N1 = N . Then
the outer solution is

ψ̃(1) = −2
(

Ĩ1 + Ĩ2
)

ψ̃(2) = −2
(

Ĩ3 + Ĩ4
)

w̃(1) = −2
(

Ĩ5 + Ĩ6
)

w̃(2) = −2
(

Ĩ7 + Ĩ8
)

(98)

where the integrals are defined in Appendix E and have asymptotic behavior as x̃→ 0 of

ψ̃(1) ∼ 2ǫĥ (0)
1

x̃

N sinNy

N2 cos2NH + sin2NH

ψ̃(2) ∼ 2ǫĥ (0)
1

x̃

N

N2 cos2NH + sin2NH
[sinNH cos (y −H) +N cosNH sin (y −H)]

w̃(1) ∼ 2ǫĥ (0)N

N2 cos2NH + sin2NH
{N ln |x̃| cosNy

+
π

2
sgn x̃

[

N2 cosNH sinN (y −H) + sinNH cosN (y −H)
]

}

w̃(2) ∼ 2ǫĥ (0)N

N2 cos2NH + sin2NH
{ln |x̃| [N cosNH cos (y −H) − sinNH sin (y −H)]

π

2
sgn x̃ [N cosNH sin (y −H) + sinNH cos (y −H)]

}



































































































































, x̃→ 0

(99)
and a jump in the spanwise velocity across the inner domain of

w̃(1)

∣

∣

∣

0+

0−
=

2πǫĥ (0)N

N2 cos2NH + sin2NH

[

N2 cosNH sinN (y −H) + sinNH cosN (y −H)
]

w̃(2)

∣

∣

∣

0+

0−
=

2πǫĥ (0)N

N2 cos2NH + sin2NH
[N cosNH sin (y −H) + sinNH cos (y −H)]

(100)
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2.5 Matching

Rewriting the inner solution as

ψ
(0)
(1) = r (x) cosNy + s (x) sinNy

ψ
(0)
(2) = p (x) cos (y −H) + H{p (x)} sin (y −H)

(101)

the asymptotic behavior as x→ ∞ is

p (x) ∼ C

x

H{p (x)} ∼ CN

tanNH

1

x

r (x) ∼ −ǫh (x)

s (x) ∼ C

sinNH

1

x

η (x) ∼ −p (x)























































































, x→ ∞ (102)

where the constant C must be determined numerically. In the linear limit, the constant C
approaches

Clin =
2Nǫĥ (0) sinNH

N2 cos2NH + sin2NH
(103)

Thus

ψ
(0)
(1) ∼

C

sinNH

sinNy

x

ψ
(0)
(2) ∼ C

cos (y −H) + N
tanNH

sin (y −H)

x



























, x→ ∞ (104)

In order to properly match the jump in spanwise velocity, it is useful to rewrite the inner,
nonlinear solution in terms of harmonics of the streamfunction as

ψ
(0)
(1) = r cosN

(

Ψ(0) −H
)

+ s sinN
(

Ψ(0) −H
)

+
∞
∑

n=1

l−n (x) sinnN
(

Ψ(0) − y
)

+m−
n (x) cosnN

(

Ψ(0) − y
)

ψ
(0)
(2) = p cos

(

Ψ(0) −H
)

+ H{p} sin
(

Ψ(0) −H
)

+
∞
∑

n=1

l+n (x) sinn
(

Ψ(0) − y
)

+m+
n (x) cosn

(

Ψ(0) − y
)

(105)
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where l±n and m±
n are the coefficients (as a function of x) of the terms arising from nonlinear

interactions in the inner solution. These terms will give rise to jumps in spanwise velocity at
higher vertical harmonics and are the forcing of the higher harmonics in the outer solution.
They can be evaluated by orthogonal decomposition as

l−n (x) =
N

π

ˆ 2π
N

0

(

Ψ(0) − y
)

sinnNΨ(0)dΨ(0)

m−
n (x) =

N

π

ˆ
2π
N

0

(

Ψ(0) − y
)

cosnNΨ(0)dΨ(0)

l+n (x) =
1

π

ˆ 2π

0

(

Ψ(0) − y
)

sinn
(

Ψ(0) −H
)

d
(

Ψ(0) −H
)

m+
n (x) =

1

π

ˆ 2π

0

(

Ψ(0) − y
)

cosn
(

Ψ(0) −H
)

d
(

Ψ(0) −H
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, n = 2, 3, 4, · · · (106)

and l±1 and m±
1 can be found by subtracting the appropriate leading order function, p (x),

H{p (x)}, r (x) or s (x), from the orthogonal decomposition.

l−1 (x) = −s (x) +
N

π

ˆ
2π
N

0

(

Ψ(0) − y
)

sinNΨ(0)dΨ(0)

m−
1 (x) = −r (x) +

N

π

ˆ 2π
N

0

(

Ψ(0) − y
)

cosNΨ(0)dΨ(0)

l+1 (x) = −p (x) +
1

π

ˆ 2π

0

(

Ψ(0) − y
)

sin
(

Ψ(0) −H
)

d
(

Ψ(0) −H
)

m+
1 (x) = −H{p (x)} +

1

π

ˆ 2π

0

(

Ψ(0) − y
)

cos
(

Ψ(0) −H
)

d
(

Ψ(0) −H
)

(107)

Then the spanwise velocity is

w
(0)
(1) = −N sinNΨ(0)

ˆ x

0

r (x′) dx′ +N cosNΨ(0)

ˆ x

0

s (x′) dx′

+N
∞
∑

n=1

n

{

cosnNΨ(0)

ˆ x

0

l−n (x′)dx′ − sinnNΨ(0)

ˆ x

0

m−
n (x′)dx′

}

+ C(1)

(

Ψ(0)
)

w
(0)
(2) = − sin

(

Ψ(0) −H
)

ˆ x

0

p (x′) dx′ + cos
(

Ψ(0) −H
)

ˆ x

0

H{p (x′)} dx′

+
∞
∑

n=1

n

{

cosn
(

Ψ(0) −H
)

ˆ x

0

l+n (x′)dx′ − sinn
(

Ψ(0) −H
)

ˆ x

0

m+
n (x′)dx′

}

+ C(2)

(

Ψ(0)
)

(108)
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Using the asymptotic behavior of the functions p (x), H{p (x)}, r (x) and s (x) given in
(102), the asymptotic behavior of the spanwise velocity as x→ ∞ is

w
(0)
(1) ∼

CN

sinNH
cosNy ln |x|

w
(0)
(2) ∼ C

[

N

tanNH
cos (y −H) − sin (y −H)

]

ln |x|























, x→ ∞ (109)

exhibiting the same logarithmic divergence and lack of uniform validity as seen in the single
layer of uniformly stratified flow and confirming the need for a matched asymptotic expan-
sion. In addition to this logarithmic divergence, the spanwise velocity experiences a finite
jump across the inner domain given by

w
(0)
(1)

∣

∣

∣

∞

−∞
= −N sinNy

ˆ ∞

−∞
r (x′) dx′ +N cosNy

ˆ ∞

−∞
s (x′) dx′

+N
∞
∑

n=1

n

{

cosnNy

ˆ ∞

−∞
l−n (x′)dx′ − sinnNy

ˆ ∞

−∞
m−
n (x′)dx′

}

w
(0)
(2)

∣

∣

∣

∞

−∞
= − sin (y −H)

ˆ ∞

−∞
p (x′) dx′ + cos (y −H)

ˆ ∞

−∞
H{p (x′)} dx′
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∞
∑

n=1

n

{

cosn (y −H)

ˆ ∞

−∞
l+n (x′)dx′ − sinn (y −H)

ˆ ∞

−∞
m+
n (x′)dx′

}

+ C(2)

(

Ψ(0)
)

(110)
In order to match the inner solution, we write the outer solution as a multiple of the linear
outer solution given in (98) plus terms arising from nonlinearity in the inner solution.

ψ̃
(0)
(1) = −2A (I1 + I2) + ψ

(1)
(1),nonlin +

∞
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n=2

Φ
(n)
(1),x

ψ̃
(0)
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∞
∑
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Φ
(n)
(2),x

w̃
(0)
(1) = −2A (I5 + I6) + w

(1)
(1),nonlin +

∞
∑

n=2

Φ
(n)
(1),y

w̃
(0)
(2) = −2A (I7 + I8) + w

(1)
(2),nonlin +

∞
∑

n=2

Φ
(n)
(2),y

(111)
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where Φ
(n)
(1),(2) satisfy

(

∂2Φ(1)

∂y2
+N2Φ(1)

)

x̃x̃

+
∂2Φ(1)

∂y2
= −2πN2

(

n2 − 1
)

δ′ (x̃)
{

l̂−n (0) sinnNy + m̂−
n (0) cosnNy

}

(

∂2Φ(2)

∂y2
+N2Φ(2)

)

x̃x̃

+
∂2Φ(2)

∂y2
= −2π

(

n2 − 1
)

δ′ (x̃)
{

l̂+n (0) sinn (y −H) + m̂+
n (0) cosn (y −H)

}

(112)
subject to the boundary condition at the topography, the matching conditions at the tropopause
and the radiation condition as y → ∞.

2.6 Results and Discussion – Analytic

In this two-layer model of the atmosphere, the height of the tropopause affects the amplitude
of the waves. For certain tropopause heights, the amplitude of the waves can be significantly
enhanced, which is commonly referred to as ‘tropopause tuning’. Likewise, detuning ex-
ists for other tropopause heights giving attenuated wave amplitudes. The phenomenon of
tropopause tuning has been previously studied by Klemp and Lilly[11] and others who found
that the response in the linear limit is tuned when the tropopause is located at odd multiples
of half the vertical wavelength in the troposphere.

In order to investigate the phenomenon of tropopause tuning and the effect it has on inertial–
gravity waves far downstream of the topography, we examined the response of the inner
solution where rotation is negligible. The streamline slope is a measure of the nonlinearity
of the solution, where the linear solution has slope of order ǫ→ 0 and the nonlinear solution
has a finite slope. Figure 16 shows the maximum streamline slope in the lower layer of the
inner solution as a function of tropopause height. It is seen that, for this range of tropopaue
heights, there are three distinct peaks at which the streamline slope is a local maximum,
where the tropopause height is tuned.

The nonlinearity in the inner solution manifests itself in the outer solution through the non-
linear coefficients defined in (106) and (107). In order to verify that a tropopause height
with steep streamlines will provide the largest amount of nonlinear forcing on the outer so-
lution, these nonlinear coefficients, l±n and m±

n , were examined as a function of tropopause

height. Figure (17) shows a plot of m̂−
2 (0) =

ˆ ∞

−∞
m2 (x) dx as a function of the tropopause

height. The coefficient of the second harmonic was chosen because quadratic nonlinearities
were larger than the higher harmonics. Again the three distinct local maxima are observed
at approximately the same tropopause heights as those in Figure 16, confirming that steep
streamlines give rise to larger nonlinearities.

Based upon the results of the streamline slope in Figure 16 and the coefficients of nonlinear-
ity, of which Figure 17 is representative, two differening cases were selected for comparison.
A relatively tuned case with a tropopause height of H = 12.5 km was compared with a
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Figure 16: Maximum slope of streamlines in inner solution as a function of tropopause height for ǫ = h0N1
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Figure 17: A representative coefficient, m̂−

2
(0), of nonlinearity below the tropopause giving rise to forcing

of the outer solution by the nonlinearity in the inner solution. The n = 2 mode is the quadratic nonlinearity
and has the largest amplitude for this value of ǫ ≡ h0N1
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Figure 18: Streamfunction for flow of two layers of uniformly stratified fluid with mean velocity U0 = 10 m/s
over a mountain of height h = 0.375 km centered at x = 0 km with Rossby number Ro = 3. Tuned case
with tropopause height H = 12.5 km. This case shows waves propagating far downwind of the topography
with very little decrease in amplitude.

relatively detuned case with tropopause height H = 11.0 km. Figures 18 and 19 show the
analytical solutions for streamlines and spanwise velocity far downstream of the topography
for the tuned case with tropopause height H = 12.5 km. This is contrasted with the detuned
case shown, for which the analogous results are shown in Figures 20 and 21.

The tuned and detuned streamlines in Figures 18 and 20, respectively, are qualitatively
quite different. In the troposphere, the disturbance is significantly stronger for the tuned
case. The waves in the troposphere propagate far downstream (3000 km) with no significant
attenuation. The detuned streamlines in the troposphere show relatively weak waves that
decay downstream of the mountain and are all but nonexistant 3000 km downstream of the
topography. In the stratosphere, the differences between the tuned and detuned cases are
not as severe. Both exhibit qualitatively similar streamline patterns, but in the tuned case
the amplitude is larger further downstream.

The spanwise velocity profiles shown in Figure 19 for the tuned case and Figure 21 for the
detuned case exhibit the same qualitative features as the streamlines. In the tropopause, the
tuned response is much stronger than the detuned response and is nearly as strong 3000 km
downstream of the mountain as it is 500 km downstream of the mountain. The detuned
spanwise velocity in the troposphere is weaker than the tuned response, and its amplitude
decays significantly as the distance downwind of the mountain increases. In the stratosphere,
the spanwise velocity exhibits the closed contours characteristic of nonlinearities; whereas,
the tuned response shows relatively long, smooth contours of spanwise velocity. This is

41



Horizontal Position − x [km]

A
lti

tu
de

 −
 y

 [k
m

]

 

 

500 1000 1500 2000 2500 3000
0

2.5

5

7.5

10

12.5

15

17.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 19: Contours of transverse velocity for flow of two layers of uniformly stratified fluid with mean
velocity U0 = 10 m/s over a mountain of height h = 0.375 km centered at x = 0 km with Rossby number
Ro = 3. Tuned case with tropopause height H = 12.5 km. This case shows waves propagating far downwind
of the topography with very little decrease in amplitude.
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Figure 20: Streamfunction for flow of two layers of uniformly stratified fluid with mean velocity U0 = 10 m/s
over a mountain of height h = 0.375 km centered at x = 0 km with Rossby number Ro = 3. Detuned case
with tropopause height H = 11 km. This response is relatively weak and decays far downstream of the
topography.
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Figure 21: Contours of transverse velocity for flow of two layers of uniformly stratified fluid with mean
velocity U0 = 10 m/s over a mountain of height h = 0.375 km centered at x = 0 km with Rossby number
Ro = 3. Detuned case with tropopause height H = 11 km. This response is relatively weak and decays far
downstream of the topography.

similar to the observations in the single layer of uniformly stratified flow for the linear
solution shown in Figure 8 and the nonlinear solution shown in Figure 9.

2.7 Results and Discussion – Numeric

In addition to the above analytic investigation of tropopause height, a companion numerical
simulation was run to investigate the combined effect of the tropopause and nonlinearity.
As stated above, the slopes of the streamlines in the inner solution along with the nonlin-
earity coefficients indicate that the tropopause is relatively tuned at heights of H ≈ 6.5 km,
10 km and 12.5 km. Because the inner solution is periodic, the effect of tropopause height is
periodic with a period equal to the vertical wavelength in the troposphere. Thus the tuning
seen at H = 12.5 km investigated analytically above should be approximately equal to the
tuning observed at a tropopause height of H = 6.5 km. For the numerical simulations, a
higher tropopause height will take longer to reach steady-state than a lower height, so the
tropopause height of H = 6.5 km was selected for our numerical investigation of tropopause
tuning.

In the numeric code, the Brunt-Väisälä frequency profile is slightly smoothed. The functional
form is a hyperbolic tangent specified as

N =
1

2
{3 + aN + bN tanh [cN (z − dN)]} (113)

where the four parameters aN , bN , cN and dN determine the location of the tropopause and
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Figure 22: A comparison of numerically calculated nonlinear streamlines with the linear, analytic solution
for two layers of uniformly stratified topography. The tropopause is located at a non-dimensional height
of H = 6.5. In the numeric code, this is done using the functional form of (113). The amplitude of the
topography is ǫ ≡ h0N1

U0

= 0.4 and the Rossby number is Ro = 10.

the sharpness of the transition of Brunt-Väisälä frequency in going from the troposphere to
the stratosphere.

Figure 22 shows the streamlines for the numeric solution of stratified flow over topography
in the presence of weak rotation, and provides a comparison with the linear, analytic, hydro-
static two-layer streamfunction solution of (87). The linear, analytic and nonlinear, numeric
solutions differ considerably. In addition to numeric streamlines being shifted downstream of
the linear, analytic streamlines (which is partially due to non-hydrostatic effects), the non-
linear slopes are also steeper. Because the numerical results are limited by computational
constraints, it is impossible to see from these results whether the inertial–gravity waves prop-
agate far downstream as they do in the analytical solution.

Figure 23 shows the spanwise velocity calculated for two layers of uniformly stratified flow
with a tropopause height of H = 6.5 km. The top figure shows the linear, hydrostatic, ana-
lytic response and the lower figure shows the fully numeric, nonlinear solution. Qualitatively
the results show that the nonlinear response in the troposphere is much stronger than the
corresponding linear response. This is consistent with the large nonlinear forcing coefficients
in the troposphere of the analytic solution.

Figure 24 provides a more quantitative comparison of the spanwise velocity for the linear an
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Figure 23: Spanwise velocity profile obtained from (a) the linear, analytic solution (b) the nonlinear, numeric
solution for parameters given in Figure 22.
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Figure 24: Spanwise velocity as a function of altitude for several locations downstream of of the topography
for parameters given in Figure 22. Dimensions of downstream locations are in kilometers, i.e 40 km, 50 km,
etc.

nonlinear cases. In the figure, the vertical profile of spanwise velocity is plotted at several
stations downstream of the topography. Above the tropopause, there is very little difference
between the linear and nonlinear solutions. However, below the troposphere, the nonlinear
spanwise velocity is much larger (in magnitude) than the linear response, which is consistent
with the qualitative observations made in Figure 23.

In order to make an even more detailed comparison between the linear and nonlinear so-
lutions, the vertical spectrum of the spanwise velocity for both solutions was computed at
several locations downstream of the topography. The results are shown in Figure 25. In
the lower layer, the propagating component of the linear solution should have a vertical
wavenumber of unity. For this case, the vertically propagating component of the linear solu-
tion in the stratosphere should have a vertical wavenumber of two because the Brunt–Väisälä
frequency in the stratosphere is twice that in the troposphere. The linear spectra have strong
peaks at the appropriate wavenumbers and are essentially zero for higher harmonics, which is
consistent with the formulation of the linear solution given in (87). The forcing of the outer
solution by nonlinearity in the inner solution gives rise to higher harmonics in the vertical,
as formulated in (108). These higher harmonics are expressed using the Fourier coefficients

l̂±n (0) and m̂±
n (0). The vertical spectra of spanwise velocity downstream of the topography

in the troposphere show these higher harmonics. However, the spectra in the stratosphere
do not. Again this is consistent with Figure 24 and indicates that the nonlinearity in the
inner solution gives rise to higher harmonics in the troposphere that propagate far down-

46



stream, but the response in the stratosphere is largely unaffected by the nonlinearity for this
particular tropopause height. A comprehensive study of the effects of tropopause altitude
has not been done. It is possible that such a study would reveal tropopause heights giving
rise to more pronounced nonlinearity in the stratosphere and less in the troposphere.
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Figure 25: Vertical spectrum of spanwise velocity at several horizontal positions downstream of the to-
pography for parameters given in Figure 22. Horizontal positions downstream of topography are given in
kilometers, i.e 40 km, 50 km, etc. (a) Spectrum in the stratosphere. (b) Spectrum in the troposphere.
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3 Effect of Unsteady Wind

3.1 Introduction

The classic analyses of Queney [17] and Long [14] assume that flow of stratified fluid over to-
pography is steady in time. Many of the subsequent studies have also used this assumption,
and there are only a handful of investigations that account for unsteady wind in strati-
fied flow over topography in the atmosphere. Among these are the theoretical works of
Bell [4], Bannon and Zehnder [1] and Hines [9] and the numerical investigation of Lott and
Teitelbaum[15]. More recently the effect of unsteady wind over topography has been exam-
ined by Skopovi[19]. Based on fully numerical simulations, Skopovi pointed out that slowly
accelerated transient wind could produce streamlines that were significantly steeper than
those for an impulsively started wind. In addition, his work showed that a monochromatic
temporal fluctuation in wind speed could produce waves with larger amplitudes than those
for a steady wind corresponding to the mean wind speed. Skopovi [19] used a fully numerical
code to examine the effect of an oscillatory wind component,

U = U0 (1 + ∆ cosωt) ,

on nonlinear mountain waves. He noted that, for low background flow frequencies, ω/N0 =
0.1, say, (N0 is the buoyancy frequency), the nonlinear unsteady response may be amplified
and can be dramatically different from the steady-state response corresponding to the mean
wind U0. This is illustrated in Fig. 26 below, which shows flow streamlines at t ≈ 0.5 hr and
t ≈ 2.2 hr after the wind has been turned on. Note that, while the wind speed is equal to
U0 = 10 m/sec at both these times, the response at t ≈ 2.2 hr is significantly stronger and
quite different from the steady-state response.

These results call for a systematic study of the question: why does slowly varying wind
matter? Qualitatively, the answer can be traced to the fact that the response in the hydro-
static limit (µ = U0/ (NL) ≪ 1) evolves on a relatively long timescale t ∼ L/(U0µ

2). As a
result, low-frequency wind oscillations can have an O (1) effect, particularly in the nonlinear
response. Moreover, as the group velocity vanishes in the frame of the mountain, the hydro-
static response is resonant, so small-amplitude wind oscillations, ∆ = O (µ2), can have an
O (1) effect as well. In this investigation we present an analytic theory for stratified flow over
topography in the presence of an unsteady background flow along with some fully numeric
computational results.

3.2 Governing Equations

The asymptotic theory of Kantzios and Akylas [10], hereafter referred to as KA, generalizes
Long’s solution to account for slow temporal variations and weak spatial variations in up-
stream wind speed and Brunt–Väisälä frequency. The theory of KA is analogous to that of
Grimshaw and Yi [8], who examined the case of a finite depth flow over topography. KA
gives the leading-order streamfunction disturbance as

ψ = y +
(

Aeiy + c.c.
)

(114)

49



Figure 26: Previous numerical results of Skopovi [19] depicting response streamlines due to slowly fluctuating
wind of the form U = U0 (1 + ∆cos ωt), where U0 = 10 m/s, ∆ = 0.5 and ω/N0 = 0.1, over topography of
peak height h = 0.6 km. (a) Fluctuation of free-stream flow in time. Results in Fig. 2.b are both at times
when the free-stream flow is at 10 m/s but are separated by one period of fluctuating free-stream velocity.
(b) Comparison of transient response at two different times, which both correspond to a free-stream velocity
of 10 m/s. Despite the free-stream velocity being the same in both cases, the streamlines differ significantly,
indicating the importance of the fluctuating component of the wind. (c) A comparison of the transient
response for a fluctuating wind to the steady-state response for a steady wind given by Long’s solution.
The results show that wave amplitudes forced by the transient wind can be significantly larger than those
obtained in the steady-state solution for a steady wind. This unsteady wind may lead to wave breaking at
mountain heights smaller than those predicted by Long’s steady-state solution.
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where A is the complex amplitude function

A = a (x, Y, T ) + ib (x, Y, T ) (115)

and time and altitude have been scaled with the square of the longwave parameter, µ ≡
U0

N0L0
≪ 1 as

T = µ2t

Y = µ2y
(116)

where y and t are the nondimensional altitude and time defined previously. Then the complex
amplitude is governed by a system of Volterra integral equations. Upon taking one derivative
with respect to x of the first-kind formulation given in KA, the evolution equations become
Volterra equations of the second kind given by

Kc
11aT +Kc

12bT +

ˆ x

−∞
dx′ (K11xa

′
T +K12xb

′
T ) − 1

2
α2axxx + bxY = 0

Kc
21aT +Kc

22bT +

ˆ x

−∞
dx′ (K21xa

′
T +K22xb

′
T ) − 1

2
α2bxxx − axY = 0

(117)

where the kernels, Kij are in general nonlinear functions of the complex amplitude, A = a+ib,
and are given in Appendix F. The evolution equations are subject to the kinematic boundary
condition at the surface of the topography requiring that the curve of topography be a
streamfunction. Doing so gives the boundary condition

a cos ǫf − b sin ǫf = −1

2
ǫf (118)

where y = ǫf (x, T ) is the curve defining the topography.

Following the work of Bell [4], we transform the governing equation from one in which the
mountain is fixed and the wind unsteady to one in which the wind is steady and the mountain
oscillates. Assuming a spatially uniform, undisturbed wind of the form

U = U0

(

1 + µ2∆ cos ΩT
)

(119)

where U0 is the temporally averaged wind speed, ∆ is an amplitude of order unity and Ω the
frequency of order unity. Because µ ≪ 1, the wind is nearly constant in time with a very
small fluctuating component. The frequency Ω multiplies the stretched time, T , so despite
Ω = O (1), the frequency in unstretched coordinates is very small (µ2Ω). The combination
of a small amplitude wind oscillation at low frequency can give a leading-order disturbance.
In the transformed coordinates where the wind is steady, this corresponds to the mountain
having an amplitude of oscillation of order unity.

We define a new horizontal coordinate, ξ, for which the wind is steady and the topography
oscillates. For an unsteady wind of the form (119), the transformation is

ξ = x+
∆

Ω
sin ΩT (120)
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where the amplitude of the mountain oscillations in the steady wind coordinate system is
∆

Ω
= O (1), which leads to a large-amplitude unsteady response despite the small-amplitude

oscillations of wind in the original coordinate system. In this new coordinate system, the
curve defining the topography becomes

y = ǫf (x, T ) = ǫf (ξ) = ǫ



















e−ξ
2

, (Gaussian)

1

1 + ξ2
, (Witch of Agnesi)

(121)

3.3 Linear Limit

In the limit as the amplitude of the topography goes to zero, ǫ→ 0, the matrix of kernels in
(117) reduces to the diagonal matrix as

K11, K22 → 1, K12, K21 → 0 as ǫ→ 0 (122)

In this limit, the evolution equations are

aT − 1

2
α2aξξξ + bξY = 0

bT − 1

2
α2bξξξ − aξY = 0























, ǫ→ 0 (123)

subject to the linearized boundary condition

a = −1

2
ǫf (ξ) , Y = 0, ǫ→ 0 (124)

If we further make the assumption that the response is hydrostatic, then the dispersive terms,
aξξξ and bξξξ become zero and complex amplitude, A, can be written as an inverse Fourier
transform as

A = −ǫ
ˆ ∞

Y
T

f̂ (k) eikx exp
[

ik
∆

Ω
sin

(

−Ω

k
Y + ΩT

)]

dk, µ, ǫ→ 0 (125)

Skopovi [19] has also derived an alternate linear solution for the non-hydrostatic, steady-in-
the-mean flow over topography. The solution incorporates dispersive effects and neglects the
initial wave propagation in the transition from an undisturbed flow to the oscillatory flow
over topography. Rather, the solution gives the oscillatory flow over topography once it has
reached a periodic state. The solution is

ψ =

ˆ ∞

−∞
f̂ (k)

∞
∑

n=−∞

− (k + ω0 + n)

k
eimyJn

(

k∆

ω0

)

exp i

[

kx+my − k∆

ω0

sin (ω0t) + ω0nt

]

dk

(126)
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where ω0 is the frequency in the unstretched time domain, t, and the vertical wavenumber,
m, is chosen to satisfy boundedness and the radiation condition, and is given as

m =































i

∣

∣

∣

∣

∣

k

k + ω0n

∣

∣

∣

∣

∣

√

µ2 (k + ω0n)2 −N2,
N2

(k + ω0n)2 − µ2 < 0

|k|
k + ω0n

√

N2 − µ2 (k + ω0n)2,
N2

(k + ω0n)2 − µ2 > 0

(127)

3.4 Nonlinear Asymptotic Solution

For the general case of a finite-amplitude topography, the matrix of kernels does not reduce
to the diagonal matrix. For weakly nonlinear solutions, the kernels can be evaluated analyt-
ically through asymptotic expansion of (114). However, at the limit of wave breaking when
the streamlines become vertical, the kernels become singular. As this limit is approached,
the kernels must be evaluated numerically. In addition to the presence of the off-diagonal
kernels and the x−derivatives of the kernels in the integrals, the fully nonlinear problem
differs from the linear problem in that the boundary condition must be applied along the
contour of the topography as in (118), rather than at y = 0, as in (124). Several numerical
methods have been investigated for the integration of these nonlinear evolution equations.
Most notable among them was the modified Lax-Wendroff method employed by Prasad and
Akylas [16]. However, in each of the methods tried, grid-scale oscillations appeared for to-
pography of amplitude greater than approximately ǫ = 0.50. These grid-scale oscillations
generally appeared after approximately one quarter of the period of oscillation of the wind,
which was on the order of one hundred computational timesteps. These grid-scale oscillations
were not seen for smaller-amplitude topography. The method of filtering used by Prasad
and Akylas [16] was implemented in an attempt to eliminate these grid-scale fluctuations.
However, mild filtering was unable to adequately eliminate these erroneous oscillations, and
work on their elimination for larger-amplitude topography is ongoing.

Figure 27 shows a streamlines for unsteady flow over topography for a nondimensional moun-
tain amplitude of ǫ = 0.5 and amplitude of wind oscillation that is 18 percent of the mean
wind speed of 10 m/s. A comparison of five different solutions is presented. The solution
labeled “Linear Long’s” is Long’s solution for steady wind in the linear limit. The solution
labeled “Long’s” is Long’s solution for steady wind over finite-amplitude topography. The
solution labeled “CFD” is the fully numeric solution obtained by integrating the governing
equations for the primitive variables (u, v ρ and p) in time. The solution labeled “Asymp-
totics” is the integration of the governing equations given in (117) subject to the boundary
condition (118). Finally, the solution labeled “Linear Asymptotics” is the solution to the
linearized governing equations in (123) subject to the linearized boundary condition (124).

Above the topography, the agreement between the asymptotic theory of KA and the com-
putational solution is reasonably good. Downstream and aloft, the fully numeric solution
exhibits waves of wavelength approximately 12 km. For this relatively small-amplitude to-
pography (ǫ = 0.50), the unsteady streamlines do not appear to be significantly steeper than
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Figure 27: Streamlines for unsteady flow over topography. µ = 1
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those for the steady flow of Long’s solution. However, they are considerably steeper than
the corresponding linear streamlines, suggesting that as the amplitude of the topography in-
creases, the nonlinear effect of unsteadiness increases. Extrapolating this, it is plausible that
slightly unsteady wind can produce significantly steeper streamlines, as shown by Skopovi
[19].

Despite not having an asymptotic solution for larger amplitudes, numerical simulations have
been done for unsteady wind over mountains with amplitudes larger than ǫ = 0.50. Figure
28 shows streamlines for the fully numeric simulation of stratified flow over topography with
unsteady upstream wind. The parameters are the same as those in the previous case with the
exception that the mountain height is now h0 = 0.73 km, corresponding to a nondimensional
amplitude of ǫ = 0.73 for characteristic wind speed U0 = 10 m/s and Brunt–Väisälä frequency
N0 = 0.01 sec−1. The results show that the nonlinear response with weak fluctuations in
upstream wind speed is significantly stronger than that predicted by Long’s solution for
steady wind. In particular, the streamline at approximately x = 10 km, y = 4 km is
quite steep compared to Long’s solution. This suggests that the critical amplitude for wave
breaking for the unsteady wind is smaller than the critical amplitude for wave breaking for
the steady Long’s solution.
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4 Conclusions

• In stratified flow over topography, rotation behaves as a singular perturbation when
Ro≫ 1. For mountains of width less than approximately L = 50 km, Coriolis forces do
not have sufficient time to act on the flow as it passes over the mountain. However, far
downstream of the mountain, rotation becomes as important as stratification because
the Coriolis force has sufficient time to act upon the flow. The results of §1 show the
effect of rotation far downstream of topography for large Rossby number.

• A matched asymptotic expansion has been developed for nonlinear stratified flow over
topography in the limit Ro ≫ 1. The inner region of the domain is near the mountain
horizontally and extending upward indefinitely. In this region, rotation is a weak per-
turbation and the leading-order solution is that of Long. The outer region of the domain
is far from the topography: x ≫ U0

f
. Here the solution is linear but the rotation, in

addition to stratification, is of leading-order importance. The matching process shows
that nonlinear interaction in the inner solution give rise to higher-harmonic oscillations
that propagate far downstream of the topography.

• Nonlinear interactions above the mountain give rise to steady, higher-harmonic gravity–
inertial waves far downstream. The effect of nonlinearity for a single layer is most clearly
seen in comparing the linear spanwise velocity shown in Figure 8 with the corresponding
nonlinear spanwise velocity depicted in Figure 9. The structure of the spanwise velocity
for the nonlinear case shows closed contours indicative of higher harmonics in the ver-
tical direction. These higher harmonics are the signature of the nonlinear interactions
above the topography. For the single layer, these nonlinear interactions are relatively
weak because Long’s solution (with the nonlinear boundary condition) does not differ
appreciably from the linear limit of Long’s solution. Thus nonlinear interactions are
relatively weak and the higher harmonics far downstream are relatively weak for the
single-layer model of the atmosphere. The effect becomes stronger when the tropopause
is taken into account.

• The asymptotic theory has been qualitatively validated via comparison with fully nu-
meric simulations of stratified flow on an f−plane. In particular, the simulations for
two layers of uniformly stratified flow show the presence of higher harmonics. This
can be seen in the vertical spectrum of spanwise velocity in Figure 25. However, com-
parison of the analytic theory with these numeric simulations is imperfect. In order
to compare with the asymptotic theory, the numeric simulations should give steady-
state solutions far downstream of the topography. Because of limits in computational
resources, a steady-state solution is only obtained for relatively short distances down-
stream (x < 900 km), preventing a good comparison with the analytical results. Never-
theless, the higher harmonics in the spanwise velocity shown in Figure 25 suggest that
nonlinear interactions above the topography are significant and do give rise to higher
harmonics downstream of the topography.

Because the analytical results can be easily evaluated arbitrarily far downstream, the
analytical theory provides a predictive model that is valuable when numerical simula-
tions may be impractical due to computational limitations.
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• The combined effect of the Earth’s rotation and the tropopause is to enhance and
extend the wave activity far downstream from the topography, as shown in §2. The
effect of tropopause tuning for two different tropopause heights was examined in §2.
For a tropopause height of H = 12.5 km (based on a wind speed U0 = 10 m/s and
Brunt–Väisälä frequencies of N1 = 0.01 sec−1 and N2 = 0.02 sec−1 in the troposphere
and stratosphere, respectively) the response above the mountain had significantly larger
streamline slopes and nonlinear interactions than the case with a tropopause height of
H = 11.0 km. These nonlinear interactions above the topography produced higher
harmonics in the wavefield far downstream of the topography, as shown in Figures 18
and 19. In general, the tropopause height at which the response is tuned depends on
the Brunt–Väisälä frequencies in the troposphere and stratosphere as well as on the
velocity upstream of the topography.

• The response due to unsteady wind can be significantly stronger than the response
due to steady wind. The analytic theory shows that, even for small fluctuations in
wind speed, waves of significantly larger amplitude can be produced than those for a
steady wind corresponding to the mean wind speed. The amplitude of the response is
based on the ratio of the amplitude of fluctuation in wind speed, ∆, to the frequency
of the fluctuation, Ω, as given in Eqn. (119). Thus for low-frequency, low-amplitude
fluctuations, the unsteady response can be of order unity. This unsteady wind can cause
wave breaking at lower topography steepness. The previous numeric results of Skopovi
26 as well as the numeric results of the current study shown in Figures 27 and 28 confirm
that an unsteady wind can produce steeper streamlines than the corresponding steady
wind.

Future work includes the following:

• The preceding analysis of tropopause tuning only considered the comparison of two
tropopause heights. The tuned case yielded a significantly amplified response in the
troposphere, but the response in the stratosphere was not significantly enhanced by the
nonlinearities. It is believed that other tropopause heights will yield larger nonlinear-
ities, and a correspondingly larger-amplitude response in the stratosphere, and a less
significant amplification in the troposphere. A search for tropopause heights producing
amplified waves in the stratosphere, as opposed to the case shown in Figure 19 for which
amplification occurs in the troposphere, will be done.

• Thus far, asymptotic results for unsteady wind for topographies of amplitude ǫ > 0.5
have not been obtained. The asymptotic model discussed in §3 will be used to study
the effect of unsteady wind over steeper topographies. These results will be compared
with the fully numeric simulations.

• The asymptotic model discussed in §3 is valid for slowly oscillating wind with small-
amplitude oscillations. The current model will be extended to relax this restriction of
small-amplitude wind oscillations, and a study of large-amplitude wind oscillations over
finite-amplitude topography will be made.
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III. APPENDICES

A Inner Limit of Outer Solution

The outer solution is

ψ̃ = −2ǫĥ (0)ℜ






ˆ 1

0

exp





−k̃y
√

1 − k̃2



 eik̃x̃dk̃ +
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1
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ik̃y
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k̃2 − 1



 eik̃x̃dk̃







w̃ = −2ǫĥ (0)ℜ
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ieik̃x̃
√

1 − k̃2
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(128)
Defining the four integrals in the solution as

I1 ≡ ℜ
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(129)

such that ψ̃ = −2ǫĥ (0) (I1 + I2) and w̃ = −2ǫĥ (0) (I3 + I4). Then the limit of I1 is

lim
x̃→0

I1 =

ˆ ∞

0

exp





−k̃y
√

1 − k̃2



 dk̃ = O (1) const

For I2, we make the transformation σ =
√
k2 − 1 |x̃| giving k̃ =

√
σ2+x̃2

|x̃| and dk̃ = 1
|x̃|

σ√
σ2+x̃2dσ.

Then

I2 = ℜ
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1

exp
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= ℜ
{

1
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i
√
σ2 + x̃2y

σ
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ei
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σ2 + x̃2
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}

Taking the limit as x̃→ 0 gives

lim
x̃→0

I2 = ℜ
{

1

|x̃|

ˆ ∞

0

exp (iy) eiσsgnx̃dσ

}

=
1

|x̃| cos y

ˆ ∞

0

cosσdσ − 1

x̃
sin y

ˆ ∞

0

sinσdσ
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Using the theory of generalized functions [13], we rewrite these integrals as
ˆ ∞

0

cosσdσ = lim
ǫ→0

ˆ ∞

0

e−ǫσ cosσdσ = 0

ˆ ∞

0

sinσdσ = lim
ǫ→0
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0

e−ǫσ sin σdσ = 1

finally giving

I2 ∼ −sin y

x̃
(x̃→ 0)

and

ψ̃ ∼ 2ǫĥ (0)
sin y
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ũ ∼ 2ǫĥ (0)
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(x̃→ 0) (130)

The limit of I3 as x̃→ 0 is

lim
x̃→0

I3 = ℜ






i
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= 0

In finding the limit of I4 as x̃→ 0, the same transformation is made as for I2. Then

I4 = ℜ






ˆ ∞

0

ei
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and its limit as x̃→ 0 is

lim
x̃→0

I4 = ℜ
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eiσsgnx̃

√
σ2 + x̃2

exp (iy) dσ

}

= cos y
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0

cosσ√
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dσ − sgnx̃ sin y
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sinσ√
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dσ

= cos yK0 (x̃) − sgnx̃ sin y
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0

sinσ√
σ2 + x̃2
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where K0 is the modified Bessel function of the second kind. The asymptotic behavior of
the modified Bessel function of the second kind is

K0 (x̃) = ln
2

|x̃| − γ + O
(

x̃2
)

, x̃→ 0
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Taking the limit of the second integral in I4 as x̃→ 0 gives

lim
x̃→0

ˆ ∞

0

sin σ√
σ2 + x̃2

dσ =

ˆ ∞

0

sin σ

σ
dσ =

π

2

Thus
I4 ∼ − cos y ln |x̃| − π

2
sgnx̃ sin y (x̃→ 0)

and
w̃ ∼ 2ǫĥ (0) cos y ln |x̃| + πǫĥ (0) sin ysgnx̃ (x̃→ 0) (131)

The sgnx̃ function results in a jump in the spanwise velocity w̃ across x̃ = 0, giving

w̃|x̃→0+

x̃→0− = 2πǫĥ (0) sin y = sin y

ˆ ∞

−∞
h (x) dx (132)
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B Matching: Jump in Spanwise Velocity due to Inner Solution

The leading order spanwise velocity in the inner solution is

w(0)
(

x,Ψ(0)
)

= C
(

Ψ(0)
)

− 2

[

sin Ψ(0)

ˆ x
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0
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]

(133)

We would like to determine the jump in spanwise velocity in going from x→ −∞ to x→ ∞.
This jump will be necessary in order to match the inner solution with the outer solution.
We start by analyzing the behavior of the integral containing b (x). From the radiation
condition, b (x) = H{a (x)} where H is the Hilbert transform. Then
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Switching the order of integration
ˆ x

0

b (x′) dx′ = −
{

i

ˆ ∞

0
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and evaluating the integral with respect to x′ gives
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+ 2
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â (k)
sin2 kx

2

k
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The first integrand is odd in x and the second term even in x. Looking at the integral from
−∞ to ∞, the even integrand vanishes and we are left with

ˆ ∞

−∞
b (x′) dx′ = −2i

ˆ ∞

0

â (k)
sin kx

k
dk + c.c. = 0

because each of the conjugates is purely imaginary. Thus the term containing b (x) does not
contribute to a finite jump across the topography in going from x → −∞ to x → ∞. Then
we are left with a finite jump in the spanwise velocity given by

w(0)
∣

∣
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∞

−∞
= −4πâ (0) sin Ψ(0) + 2π

∞
∑

n=1

n
(
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)

(134)

64



C Details of Matching - Single Layer

In order to match the outer solution to the inner solution, we first scale the leading order
outer solution by −2â(0)

ǫĥ(0)
, which is unity in the linear limit where a (x) = −1

2
ǫh (x). Then the

outer solution becomes
ψ̃ = 4â (0)ℜ{I1 + I2}

w̃ = 4â (0)ℜ{I3 + I4}
(135)

with asymptotic behavior

ψ̃ ∼ −4â (0)
sin y
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w̃ ∼ −4â (0) cos y ln |x̃| = −4â (0) cos y ln |x| − 4â (0) cos y ln β
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w̃|0+
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The ln β term in the expression for w̃ can be made to agree with the inner solution by
defining the constant of integration in the inner solution as
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giving
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At this point, the outer solution does not yet satisfy the required jump in spanwise velocity
across the inner solution. This jump is induced by the higher harmonics, rn (x) and sn (x).
Thus we must add another component to the outer solution to achieve the necessary jump
in spanwise velocity. We write

ψ̃ = 4â (0)ℜ{I1 + I2} + ψ̃II

w̃ = 4â (0)ℜ{I3 + I4} + w̃II

where ψ̃II and w̃II must satisfy

ψ̃II = o
(

1

x̃

)

w̃II = o (ln |x̃|)
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Since the outer problem is linear, we can superimpose solutions and separate ψ̃II and w̃II
into vertical Fourier components as

ψ̃II =
∞
∑

n=1

ψ̃(n)

w̃II =
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∑

n=1

w̃(n)

such that each harmonic satisfies the appropriate matching conditions with the inner solution,
namely

ψ̃(n) = o
(

1

x̃

)

w̃(n) = o (ln |x̃|)



















, x̃→ 0

w̃(n)
∣

∣

∣

0+

0−
= 2πn [r̂ (0) cosny − ŝ (0) sinny]

A new variable, Φ(n), can be defined such that

Ψ̃(n) = Φ(n)
x

w̃(n) = Φ(n)
y

Then the governing equations in (66) can be written in terms of Φ(n) for n > 1 as
(
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subject to the boundary condition
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and the radiation condition. Taking the Fourier transform in the x̃−direction gives
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The solution is then
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and the vertical wavenumber is

m (k) =



























k√
k2 − 1

, (|k| > 1)

i
|k|√

1 − k2
, (|k| < 1)

which is determined by the radiation condition. The boundary condition of zero streamline
disturbance at y = 0 requires

F (k) = − ik

k2 − k2
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Therefore, the solution is

Φ̂(n) =
ik
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{

r̂n (0) sinny + ŝn (0)
[

cosny − eim(k)y
]}

, n > 1 (137)

In inverting the Fourier transform, care must be exercised because Φ̂(n) has poles on the real
axis at k = ±kn. The contours must be deformed in a manner consistent with the radiation
condition in the horizontal direction. Since steady waves are observed downstream of the
topography only, we require

cg|x̃ ≡
∂ω

∂k
= 1 − |k|

|m|
1√

k2 +m2
> 0

Thus the integral is deformed beneath the poles giving

Φ(n) = −2π cos knx̃ [r̂n (0) sinny + ŝn (0) cosny]H (x̃)

+2ŝn (0)ℑ
{

& ∞

0

keikx̃

k2 − k2
n

exp

(

i
ky√
k2 − 1

)

dk

}

, n > 1

Defining

I
(n)
5 ≡ ℑ

{

ˆ 1

0

keikx̃

k2 − k2
n

exp

(

− ky√
1 − k2

)

dk

}

, n > 1

I
(n)
6 ≡ ℑ

{

& ∞

1

keikx̃

k2 − k2
n

exp

(

i
ky√
k2 − 1

)

dk

}

, n > 1

we rewrite the solution as

Φ(n) = −2π cos knx̃ [r̂n (0) sinny + ŝn (0) cosny]H (x̃) + 2ŝn (0)
(

I
(n)
5 + I

(n)
6

)

, n > 1

and examine the limit as x̃→ 0. For the first integral

lim
x̃→0

I
(n)
5 = ℑ

{

ˆ 1

0

k

k2 − k2
n

exp

(

− ky√
1 − k2

)

dk

}

= 0
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because the integrand converges to a real number as x̃ → 0. Next we make the same

transformation for I
(n)
6 as was made in §1.4 where σ =

√
k2 − 1 |x̃|. Then

I
(n)
6 = ℑ







& ∞

0

σ
ei

√
σ2+x̃2 sgn x̃

σ2 − (k2
n − 1) x̃2

exp

(

i
√
σ2 + x̃2y

σ

)

dσ







As x̃→ 0, the integral becomes

I
(n)
6 ∼ ℑ

{

exp (iy)

& ∞

0

σeiσ sgn x̃

σ2 − (k2
n − 1) x̃2

dσ

}

, x̃→ 0

Now the integral behaves differently depending on whether x̃ is greater or less than zero. For
x̃ > 0 we close the contour of integration to the top and there is a pole inside the contour,
giving

I
(n)
6 ∼ ℑ

{

exp (iy)

[

iπ +

ˆ ∞

0

ρe−ρ

ρ2 + (k2
n − 1) x̃2

dρ

]}

, x̃→ 0+

For negative x̃, the contour can be closed to the bottom, thereby excluding the singularity

at σ =
√

k2
n − 1x̃ and giving

I
(n)
6 ∼ ℑ

{

exp (iy)

ˆ ∞

0

ρe−ρ

ρ2 + (k2
n − 1) x̃2

dρ

}

, x̃→ 0−

For both x̃ > 0 and x̃ < 0 it is then necessary to evaluate the integral
ˆ ∞

0

ρe−ρ

ρ2 + (k1
n − 1) x̃2

dρ =
1

2

[

ei
√
k2

n−1x̃Ei1

(

i
√

k2
n − 1x̃

)

+ e−i
√
k2

n−1x̃Ei1

(

−i
√

k2
n − 1x̃

)]

= −γ − ln
(

√

k2
n − 1 |x̃|

)

+
1

2
π
√

k2
n − 1x̃+ O

{(

k2
n − 1

)

x̃2
}

, x̃→ 0

Therefore
I

(n)
6 ∼ ℑ{exp (iy) [iπH (x̃) − ln |x̃|]}

∼ πH (x̃) cos y − ln |x̃| sin y
Finally, the behavior of Φ(n) as x̃→ 0 is

Φ(n) ∼ −2π [r̂n (0) sinny + ŝn (0) cosny]H (x̃)

+2ŝn (0) [πH (x̃) cos y − ln |x̃| sin y] , |x̃| → 0, n > 1
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Taking derivatives with respect to x̃ and y gives ψ̃(n) and w̃, respectively.

ψ̃(n) ∼ −2ŝn (0) sin y

x̃

w̃(n) ∼ −2πn [r̂n (0) cosny − ŝn (0) sinny]H (x̃)

−2ŝn (0) [πH (x̃) sin y + ln |x̃| cos y]



































, x̃→ 0, n > 1

w̃(n)
∣

∣

∣

0+

0−
= 2πn [−r̂n (0) cosny + ŝn (0) sinny] − 2πŝn (0) sin y, n > 1

This result contains the necessary jump in spanwise velocity across the topography of

w̃|0+

0− = 2πn [−r̂n (0) cosny + ŝn (0) sinny]

but it also contains an additional, unwanted term in the jump. Furthermore, w̃ and ψ̃ do
not decay sufficiently fast as x̃ → 0. Thus in order to eliminate these additional, unwanted
terms, we add a linear multiple of the original linear solution, which was previously given as

ψ̃ = ℜ{I1 + I2}

w̃ = ℜ{I3 + I4}

To be specific, we write the outer solution as

ψ̃ =

[

4â (0) −
∞
∑

n=2

ŝn (0)

]

ℜ{I1 + I2} +
∞
∑

n=2

Φ
(n)
x̃

w̃ =

[

4â (0) −
∞
∑

n=2

ŝn (0)

]

ℜ{I3 + I4} +
∞
∑

n=2

Φ(n)
y

(138)

Thus we have accounted for the entire jump condition with the exception of first-harmonic
jump caused by nonlinearities

w̃(1)
∣

∣

∣

0+

0−
= 2π (r̂1 (0) cos y − ŝ1 sin y)

The solution for the first harmonic outer solution must satisfy
(

ψ̃(1)
yy + ψ̃(1)

)

x̃x̃
+ ψ̃(1)

yy = 0

ψ̃(1) = 0, (y = 0, x̃ 6= 0)

ψ̃(1)
y = w̃

(1)
x̃

(139)
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subject to the matching conditions as x̃→ 0 given by

ψ̃(1) = o
(

1

x̃

)

w̃(1) = o (ln |x̃|)



















x̃→ 0

w̃(1)
∣

∣

∣

0+

0−
= 2π [r̂1 (0) cos y − ŝ1 (0) sin y]

We then write the solution as
ψ̃(1) = ψ̃(1)

a + ψ̃
(1)
b

w̃(1) = w̃(1)
a + w̃

(1)
b

where

ψ̃(1)
a = ℜ

{

ˆ 1

0

exp

(

−ky√
1 − k2

)

eikx̃dk +

ˆ ∞

1

cos

(

ky√
k2 − 1

)

eikx̃dk

}

ψ̃
(1)
b = ℜ

{

ˆ ∞

1

sin

(

ky√
k2 − 1

)

eikx̃
}

w̃(1)
a = −ℑ

{

ˆ 1

0

eikx̃√
1 − k2

exp

(

−ky√
1 − k2

)

dk +

ˆ ∞

1

eikx̃√
k2 − 1

sin

(

ky√
k2 − 1

)

dk

}

w̃
(1)
b = ℑ

{

ˆ ∞

1

eikx̃√
k2 − 1

cos

(

ky√
k2 − 1

)}

such that both
(

ψ̃(1)
a , w̃(1)

a

)

and
(

ψ̃
(1)
b , w̃

(1)
b

)

independently satisfy (139). It is now necessary

to determine the asymptotic behavior of this solution as x̃→ 0. We define

I7 ≡ ℜ
{

ˆ ∞

1

cos

(

ky√
k2 − 1

)

eikx̃dk

}

I8 ≡ −ℑ
{

ˆ ∞

1

eikx̃√
k2 − 1

sin

(

ky√
k2 − 1

)

dk

}

such that
ψ̃(1)
a = I1 + I7

w̃(1)
a = I3 + I8

which utilizes I1 and I3 defined in Appendix A. Then making the transformation σ =
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√
k2 − 1 |x̃| as before gives

I7 ∼ ℜ
{

1

|x̃|

ˆ ∞

0

eiσ sgn x̃ cos ydσ

}

=
cos y

|x̃|

ˆ ∞

0

cosσdσ ∼ 0

I8 ∼ −ℑ
{

sin y

ˆ ∞

0

eiσ sgn x̃

√
σ2 + x̃2

dσ

}

= − sin y sgn x̃

ˆ ∞

0

sin σ√
σ2 + x̃2

dσ ∼ −π
2

sgn x̃ sin y

ψ̃
(1)
b ∼ ℜ

{

sin y

|x̃|

ˆ ∞

0

eiσ sgn x̃dσ

}

∼ sin y

|x̃|

ˆ ∞

0

cosσdσ ∼ 0

w̃
(1)
b ∼ ℑ

{

cos y

ˆ ∞

0

eiσ sgn x̃

√
σ2 + x̃2

dσ

}

∼ cos y sgn x̃

ˆ ∞

0

sinσ√
σ2 − x̃2

dσ ∼ π

2
cos y sgn x̃



























































































, x̃→ 0

Utilizing the previous results that I1 ∼ O (1) const and I3 → 0 as x̃→ 0 gives

ψ̃(1)
a ∼ O (1) const

ψ̃
(1)
b ∼ 0

w̃(1)
a ∼ −π

2
sin y sgn x̃

w̃
(1)
b ∼ π

2
cos y sgn x̃



























































, x̃→ 0

w̃(1)
a

∣

∣

∣

0+

0−
= −π sin y

w̃
(1)
b

∣

∣

∣

0+

0−
= π cos y

(140)

Thus the solution accounting for the nonlinear components generated at the first harmonic
should be

ψ̃(0) =

ψ̃(0) = 2
[

r̂1 (0)w
(1)
b + ŝ1 (0)w(1)

a

]

(141)
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D Details of Linear, Uniformly Valid Solution to Two Layers of Uniform Strat-
ification

The governing equations for two layers of uniformly stratified flow in the linear limit are

ψ(1),yy +N2
1ψ(1) + β2

ˆ x

−∞

ˆ x′

−∞
ψ(1),yydx

′′dx′, y < H

ψ(2),yy +N2
2ψ(2) + β2

ˆ x

−∞

ˆ x′

−∞
ψ(2),yydx

′′dx′, y > H

w(1),x = ψ(1),y

w(2),x = ψ(2),y

(142)

where Ψ = y + ψ and β = 1
Ro

subject to

ψ(1) = −ǫh (x) , y = 0

ψ(1) = ψ(2), y = H

∂ψ(1)

∂y
=
∂ψ(1)

∂y
, y = H

(143)

and the radiation condition.

Taking two derivatives of the equations for the streamfunction with respect to x gives
(

ψ(1),yy +N2
1ψ(1)

)

xx
+ β2ψ(1),yy = 0, y < H

(

ψ(2),yy +N2
2ψ(2)

)

xx
+ β2ψ(2),yy = 0, y > H

(144)

and in Fourier space

k2
(

ψ̂(1),yy +N2
1 ψ̂(1)

)

− β2ψ̂(1),yy = 0, y < H

k2
(

ψ̂(2),yy +N2
2 ψ̂(2)

)

− β2ψ̂(2),yy = 0, y > H

(145)

(

k2 − β2
)

ψ̂(1),yy +N2
1k

2ψ̂(1) = 0, y < H

(

k2 − β2
)

ψ̂(2),yy +N2
2k

2ψ̂(2) = 0, y > H

(146)

ψ̂(1),yy +
N2

1k
2

(k2 − β2)
ψ̂(1) = 0, y < H

ψ̂(2),yy +
N2

2k
2

(k2 − β2)
ψ̂(2) = 0, y > H

(147)
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subject to the boundary condition at the topography

ψ̂(1) = −ǫĥ, y = 0 (148)

and the matching conditions at the tropopause

ψ̂(1) = ψ̂(2), y = H

∂ψ̂(1)

∂y
=
∂ψ̂(2)

∂y
, y = H

(149)

The general solution in the Fourier domain is

ψ̂(1) = a (k) exp

(

i
N1ky√
k2 − β2

)

+ b (k) exp

(

−i N1ky√
k2 − β2

)

ψ̂(2) = c (k) exp

(

i
N1ky√
k2 − β2

)

+ d (k) exp

(

−i N1ky√
k2 − β2

)

(150)

Before imposing the boundary conditions at the topography and tropopause, it is convenient
to first take the inverse Fourier transform and impose the radiation condition in the upper
solution. In general, the inverse Fourier transform can be written

ψ(i) = 2ℜ
{

ˆ β

0

ψ̂(i)e
ikxdk +

ˆ ∞

β

ψ̂(i)e
ikxdk

}

(151)

because the streamfunction disturbance, ψ, is a physical quantity and must be real. Taking
the inverse Fourier transform of the general solution in (150) gives

ψ(1) = 2ℜ
{

ˆ β

0

[

a exp

(

N1ky√
β2 − k2

)

+ b exp

(

−N1ky√
β2 − k2

)]

eikxdk

+

ˆ ∞

β

[

a exp

(

i
N1ky√
k2 − β2

)

+ b exp

(

−i N1ky√
k2 − β2

)]

eikxdk

}

ψ(2) = 2ℜ
{

ˆ β

0

[

c exp

(

N2ky√
β2 − k2

)

+ d exp

(

−N2ky√
β2 − k2

)]

eikxdk

+

ˆ ∞

β

[

c exp

(

i
N2ky√
k2 − β2

)

+ d exp

(

−i N2ky√
k2 − β2

)]

eikxdk

}

(152)

The radiation condition above the tropopause requires d (k) = 0 for k > β and boundedness

73



as y → ∞ requires c (k) = 0 for k < β giving

ψ(1) = 2ℜ
{

ˆ β

0

[

a exp

(

N1ky√
β2 − k2

)

+ b exp

(

−N1ky√
β2 − k2

)]

eikxdk

+

ˆ ∞

β

[

a exp

(

i
N1ky√
k2 − β2

)

+ b exp

(

−i N1ky√
k2 − β2

)]

eikxdk

}

ψ(2) = 2ℜ
{

ˆ β

0

d exp

(

−N2ky√
β2 − k2

)

eikxdk +

ˆ ∞

β

c exp

(

i
N2ky√
k2 − β2

)

eikxdk

}

(153)

To facilitate the application of the bondary condition, we rewrite the solution in the tropo-
sphere as

ψ(1) = 2ℜ
{

ˆ β

0

[

f cosh

(

N1ky√
β2 − k2

)

+ g sinh

(

N1ky√
β2 − k2

)]

eikxdk

+

ˆ ∞

β

[

f cos

(

N1ky√
k2 − β2

)

+ g sin

(

N1ky√
k2 − β2

)]

eikxdk

}

ψ(2) = 2ℜ
{

ˆ β

0

d exp

(

−N2ky√
β2 − k2

)

eikxdk +

ˆ ∞

β

c exp

(

i
N2ky√
k2 − β2

)

eikxdk

}

(154)

The boundary condition at the surface of topography requires f (k) = −ǫĥ (k), giving

ψ(1) = 2ℜ
{

ˆ β

0

[

−ǫĥ cosh

(

N1ky√
β2 − k2

)

+ g sinh

(

N1ky√
β2 − k2

)]

eikxdk

+

ˆ ∞

β

[

−ǫĥ cos

(

N1ky√
k2 − β2

)

+ g sin

(

N1ky√
k2 − β2

)]

eikxdk

}

ψ(2) = 2ℜ
{

ˆ β

0

d exp

(

−N2ky√
β2 − k2

)

eikxdk +

ˆ ∞

β

c exp

(

i
N2ky√
k2 − β2

)

eikxdk

}

(155)
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Then the matching conditions of (149) give

−ǫĥ cosh

(

N1kH√
β2 − k2

)

+ g sinh

(

N1kH√
β2 − k2

)

= d exp

(

−N2kH√
β2 − k2

)

, 0 < k < β

−ǫĥ cos

(

N1kH√
k2 − β2

)

+ g sin

(

N1kH√
k2 − β2

)

= c exp

(

iN2kH√
k2 − β2

)

, k > β

N1

[

−ǫĥ sinh

(

N1kH√
β2 − k2

)

+ g cosh

(

N1kH√
β2 − k2

)]

= −N2

[

d exp

(

−N2kH√
β2 − k2

)]

, 0 < k < β

N1

[

ǫĥ sin

(

N1kH√
k2 − β2

)

+ g cos

(

N1kH√
k2 − β2

)]

= iN2c exp

(

iN2kH√
k2 − β2

)

, k > β

(156)
Solving gives

c (k) =
2N1ǫĥ (k)

(N2 −N1) exp
(

i (N1+N2)kH√
k2−β2

)

− (N1 +N2) exp
(

i (N2−N1)kH√
k2−β2

) , β < k <∞

d (k) =
−2N1ǫĥ (k)

(N1 +N2) exp
(

(N1−N2)kH√
β2−k2

)

+ (N1 −N2) exp
(

−(N1+N2)kH√
β2−k2

) , 0 < k < β

g (k) =































































(N1 +N2) exp
(

(N1−N2)kH√
β2−k2

)

+ (N2 −N1) exp
(

−(N1+N2)kH√
β2−k2

)

(N1 +N2) exp
(

(N1−N2)kH√
β2−k2

)

+ (N1 −N2) exp
(

−(N1+N2)kH√
β2−k2

)ǫĥ (k) , 0 < k < β

−i
(N1 −N2) exp

(

i (N1+N2)kH√
k2−β2

)

− (N1 +N2) exp
(

i (N2−N1)kH√
k2−β2

)

(N2 −N1) exp
(

i (N1+N2)kH√
k2−β2

)

− (N1 +N2) exp
(

i (N2−N1)kH√
k2−β2

)ǫĥ (k) , β < k <∞

(157)
Thus the streamfunction solution is (155) with c (k), d (k) and g (k) given in (157).

The spanwise velocity is determined from the streamfunction solution. For the linear case,
the spanwise velocity is wx = ψy Taking the Fourier transform of this gives

ŵ = − i

k
ψ̂y (158)
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Thus the spanwise velocity can be written

w(1) = 2ℜ
{

ˆ β

0

−iN1√
β2 − k2

[

−ǫĥ sinh

(

N1ky√
β2 − k2

)

+ g cosh

(

N1ky√
β2 − k2

)]

eikxdk

+

ˆ ∞

β

−iN1√
k2 − β2

[

ǫĥ sin

(

N1ky√
k2 − β2

)

+ g cos

(

N1ky√
k2 − β2

)]

eikxdk

}

, y < H

w(2) = 2ℜ
{

ˆ β

0

iN2√
β2 − k2

d exp

(

−N2ky√
β2 − k2

)

eikxdk

+

ˆ ∞

β

N2√
k2 − β2

c exp

(

i
N2ky√
k2 − β2

)

eikxdk

}

, y > H

(159)
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E Outer Solution for Two Layers of Uniformly Stratified Flow

The integrals for the outer solution given in (98) are defined as

Ĩ1 ≡ ǫℜ















ˆ 1

0

ĥ
(

k̃
)

N cosh
(

Nk̃(y−H)√
β2−k̃2

)

− sinh
(

Nk̃(y−H)√
β2−k̃2

)

N cosh
(

Nk̃H√
β2−k̃2

)

+ sinh
(

Nk̃H√
β2−k̃2

) eik̃x̃dk̃















Ĩ2 ≡ ǫℜ















ˆ ∞

1

ĥ
(

k̃
)

N cos
(

k̃N(y−H)√
k̃2−β2

)

+ i sin
(

k̃N(y−H)√
k̃2−β2

)

N cos
(

k̃NH√
k̃2−β2

)

− i sin
(

k̃NH√
k̃2−β2

) eik̃x̃dk̃















Ĩ3 ≡ ǫℜ















ˆ 1

0

ĥ
(

k̃
)

N exp
(

− k̃(y−H)√
β2−k̃2

)

sinh
(

k̃NH√
β2−k̃2

)

+N cosh
(

k̃NH√
β2−k̃2

)eik̃x̃dk̃















Ĩ4 ≡ ǫℜ















ˆ ∞

1

ĥ
(

k̃
)

N exp
(

i k̃(y−H)√
k̃2−β2

)

N cos
(

k̃NH√
k̃2−β2

)

− i sin
(

k̃NH√
k̃2−β2

)eik̃x̃dk̃















Ĩ5 ≡ ǫℜ















ˆ 1

0

−iĥ
(

k̃
) N
√

β2 − k̃2

N sinh
(

Nk̃(y−H)√
β2−k̃2

)

− cosh
(

Nk̃(y−H)√
β2−k̃2

)

N cosh
(

Nk̃H√
β2−k̃2

)

+ sinh
(

Nk̃H√
β2−k̃2

) eik̃x̃dk̃















Ĩ6 ≡ ǫℜ















ˆ ∞

1

−iĥ
(

k̃
) N
√

k̃2 − β2

−N sin
(

k̃N(y−H)√
k̃2−β2

)

+ i cos
(

k̃N(y−H)√
k̃2−β2

)

N cos
(

k̃NH√
k̃2−β2

)

− i sin
(

k̃NH√
k̃2−β2

) eik̃x̃dk̃















Ĩ7 ≡ ǫℜ















ˆ 1

0

iĥ
(

k̃
)

√

β2 − k̃2

N exp
(

− k̃(y−H)√
β2−k̃2

)

sinh
(

k̃NH√
β2−k̃2

)

+N cosh
(

k̃NH√
β2−k̃2

)eik̃x̃dk̃















Ĩ8 ≡ ǫℜ















ˆ ∞

1

ĥ
(

k̃
)

√

k̃2 − β2

N exp
(

i k̃(y−H)√
k̃2−β2

)

N cos
(

k̃NH√
k̃2−β2

)

− i sin
(

k̃NH√
k̃2−β2

)eik̃x̃dk̃















(160)
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F Details - Unsteady Wind

The kernels in the nonlinear evolution equations are defined as

K11 (x, x′) =
1

8π

ˆ 2π

0

dψya
(

y′a + (y′y′a)ψ − yy′aψ
)

K12 (x, x′) =
1

8π

ˆ 2π

0

dψya
(

y′b + (y′y′b)ψ − yy′bψ
)

K21 (x, x′) =
1

8π

ˆ 2π

0

dψyb
(

y′a + (y′y′a)ψ − yy′aψ
)

K22 (x, x′) =
1

8π

ˆ 2π

0

dψyb
(

y′b + (y′y′b)ψ − yy′bψ
)

(161)
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